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ABSTRACT

The AdS/CFT correspondence proposes a duality between a gravitational theory in a
(d+1)-dimensional anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) living
on its d-dimensional boundary. This work introduces the foundational ingredients of the
correspondence through a detailed study of the geometry of AdS spacetimes and the symme-
try structures of conformal field theories, particularly in two dimensions, where enhanced
symmetry allows sometimes exact results. On the gravity side, the focus lies on maximally
symmetric solutions to Einstein’s equations with negative cosmological constant, coordi-
nate charts, and boundary structure. On the field theory side, conformal symmetry, primary
fields, correlation functions, Ward identities, and the operator formalism are developed in
detail.

A key theme of the thesis is the geometric underpinning of the correspondence, with
an emphasis on the role of Riemannian and conformal geometry. In particular, the Feffer-
man–Graham ambient metric construction is presented as a formal geometric justification
for this holographic setup. The AdS/CFT dictionary is explored via the GKP–Witten pre-
scription and the behaviour of bulk fields near the boundary. Applications include the study
of strongly coupled gauge theories and black hole thermodynamics using dual weakly cou-
pled gravitational theories.

This project, while motivated by physics, is approached with a mathematical inclination,
seeking to understand the geometrical content underlying AdS/CFT and to place the corre-
spondence within the broader interactions of geometric structures in mathematical physics.
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Chapter 1

Introduction
Holography is the idea that physics in 𝑑 + 1 dimensions can be understood by a theory at

infinity (a ’hologram at infinity’) in 𝑑 or fewer dimensions. In the context of AdS/CFT, it

is conjectured that the AdS bulk gravity theory is related to a conformal field theory (CFT)

on the boundary. Spaces like spheres and planes are heavily studied because they possess

maximal symmetry where the number of isometries (metric-preserving transformations) is

maximum. One such generalisation of these spaces is the negatively curved 𝐴𝑑𝑠 space, which

also solves Einstein’s equations in a vacuum. It has been very fruitful to consider this space in

string theoretical studies. On the other hand, we have scale invariance, which is a subgroup

of the larger symmetry of conformal invariance. Conformal transformations are essentially

angle-preserving transformations, i.e. they affect the metric only up to a scale factor. This

symmetry, for example, is seen in many statistical systems near the critical point, and is the

main content of conformal field theories. The goal of this thesis has been to understand fun-

damental elements behind AdS/CFT Correspondence, namely, the geometry of Ads space-

time, Conformal field theory (CFT), the prescription to relate quantum theories in the bulk

and boundary of AdS, along with some geometric aspects of manifolds in the context of

AdS/CFT.

Chapter 2 introduces formally the Riemannian structure on smooth manifolds and fun-

damental geometric tools like connections and curvature. Towards the end, we identify one

of the crucial conformal contents of the Riemannian geometry - the Weyl Tensor (and the

Cotton tensor). In the context of AdS/CFT, as we will see, conformal geometry is in particu-

lar relevant, where the objects are manifolds that possess a class of Riemannian metrics rather

1



1 Introduction

than a unique one. We discussed this connection in the last chapter. Chapter 3 exposes the

Anti-de Sitter space in all its symmetries and coordinate forms of the metric. Importantly,

there is the notion of (conformal) boundary structure of Ads. With this, studying Confor-

mal Field theory becomes natural on the boundary, and chapters 4,5,6 discuss the structure

of this theory in general and 2 dimensions. CFTs in 2 dimensions are very powerful with

higher symmetries and solvable (sometimes exactly) in nature. Given an understanding of

conformal transformations in 2 dimensions, we relate these back to isometries on 𝐴𝑑𝑆3 in

chapter 7. Chapter 8 lays out the conjecture via two proposed prescriptions along with the

subtleties that occur in Lorentzian signatures to compute the correlation functions on the

boundary CFT.

Central to the geometric interaction with AdS/CFT is the theory of conformal invari-

ants which is the subject of Chapter 9. The ambient metric construction due to Fefferman

and Graham (FG) is also discussed, which laid out the foundations in conformal geometry

and has also played an important role in the development of AdS/CFT holography. It’s the

formal underlying reason why AdS/CFT correspondence makes sense.

Guiding Principles

In this drama of mathematics and physics, which fertilise each other in the dark,

but which prefer to deny and misconstrue each other face to face—I cannot, however,

resist playing the role of a messenger, albeit, as I have abundantly learned, often

an unwelcome one. (Hermann Weyl (1928))

Now, nearly a century later, with the advent of gauge theory, string theory, twistor theory,

etc., the interaction between mathematics and physics is more ripe than ever. After a seem-

ingly large evolution of both the fields independently and divergently, the late 20th century

has brought back the interactions beyond the fundamentals as we now know them. Wide

2



1 Introduction

areas of mathematics and Physics have now remarkable connections in geometry (algebraic

and differential), topology and even number theory. It is in this spirit that some of the work

in this thesis is carried out. After a semester and a half work on understanding AdS, CFT and

AdS/CFT correspondence from the physics point of view, the goal was shifted to connect

these areas to mathematical literature considering the author’s current interests to pursue

research in mathematics. Any such effort to connect AdS/CFT to mathematics involves an

understanding of the basics of the Geometry of Manifolds. Thus, most of the work after the

shift in goals had gone into understanding the geometric tools. The existing connection in

this setting is discussed briefly in the last chapter.

3



Chapter 2

Riemannian Geometry
The geometry in 2-dimensions is fully established, chiefly due to Gauss. Riemann laid out

the foundations for studying curved geometry in higher dimensions, which has played a rev-

olutionary part in understanding gravitational physics, along with establishing modern dif-

ferential geometry. The inner product on the Euclidean space R𝑛 (the dot product) is the

primary tool to probe the geometry. The starting point is the generalisation of this notion

to manifolds by smoothly assigning an inner product to the tangent space at each point.

Definition 2.0.1. A Riemannian manifold
(
𝑀, 𝑔

)
is a smooth manifold 𝑀 with a Eu-

clidean inner product 𝑔𝑝 on each tangent space𝑇𝑝𝑀 of M. We assume that the map 𝑝 ↦→ 𝑔𝑝

is smooth i.e for all vector fields 𝑋 ,𝑌 ∈ 𝔛(𝑀 ), 𝑔𝑝
(
𝑋𝑝,𝑌𝑝

)
is smooth for all 𝑝 ∈ 𝑀 .

So, 𝑔 is essentially a smooth 2-tensor field of the tensor bundle 𝑇 (0,2) (𝑇𝑀 ) (usually

written 𝑔 ∈ T 2 (𝑀 ) ) whose value 𝑔𝑝 for all 𝑝 ∈ 𝑀 is a symmetric, bi-linear and positive

definite 2-tensor on 𝑇𝑝𝑀 (i.e. an inner product of 𝑇𝑃𝑀 ). It is referred to as Riemannian

metric or simply metric.

All manifolds are locally Euclidean. All Riemannian manifolds are also pointwise Eu-

clidean in the sense that any inner product spaces of the same dimension (here 𝑇𝑝𝑀 ) are

isometric to each other (due to Gram-Schimdt orthogonalization) and thus to R𝑛 with the

canonical inner product.

Example 2.0.1.
(
R𝑛, 𝑔R𝑛

)
is a Riemannian Manifold. The tangent bundle𝑇R𝑛 is just R𝑛 ×

R𝑛 and we can use the standard inner product to define the Riemannian structure 𝑔,

𝑔R𝑛
( (
𝑝, 𝑣

)
,
(
𝑝, 𝑤

) )
= 𝑣 · 𝑤.

4



2 Riemannian Geometry

Definition 2.0.2. A Riemannian isomtery between Riemannian manifold
(
𝑀, 𝑔𝑀

)
and(

𝑁 , 𝑔𝑁
)

is a diffeomorphism 𝐹 : 𝑀 → 𝑁 such that 𝐹 ∗ 𝑔𝑁 = 𝑔𝑀 , i.e.

𝐹 ∗ 𝑔𝑁 (𝑣, 𝑤) := 𝑔𝑁 (𝐹∗(𝑣), 𝐹∗(𝑤)) = 𝑔𝑀 (𝑣, 𝑤)

for all tangent vectors 𝑣, 𝑤 ∈ 𝑇𝑃𝑀 and 𝑝 ∈ 𝑀 . In this case, 𝐹 −1 is also an isometry.

Example 2.0.2. Any finite-dimensional vector space𝑉 (which has a manifold structure by

decalring the canonical map 𝜙 : 𝑉 → R𝑛 to be a homeomorphism) can be made into a

Riemannian manifold with the following canonical metric,

𝑔
( (
𝑝, 𝑣

)
,
(
𝑝, 𝑤

) )
= 𝑣 · 𝑤

where we have used𝑇𝑤𝑉 � 𝑉 for all 𝑤 ∈𝑉 .

Any two such Riemannian manifolds
(
𝑉 , 𝑔𝑉

)
,
(
𝑊, 𝑔𝑊

)
of same dimension are isomet-

ric! This is because there is always a linear isometry 𝐹 : 𝑉 →𝑊 between𝑉 and𝑊 which

is easily seen to be a Riemannian isometry. So,
(
R𝑛, 𝑔R𝑛

)
is the only Riemannian manifold

of the above type (upto isometries).

Let 𝑀 is a manifold and
(
𝑁 , 𝑔𝑁

)
is a Riemannian manifold. If 𝐹 : 𝑀 → 𝑁 is an

immersion (or an embedding) then it is possible to take pullback of the metric that defines

an inner product on the tangent spaces of 𝑀 ,

𝑔𝑀 (𝑣, 𝑤) = 𝑔𝑁 (𝐹∗(𝑣), 𝐹∗(𝑤)) .

This is an inner product because 𝑔𝑀 (𝑣, 𝑣) = 0 ⇐⇒ 𝐹∗(𝑣) = 0 ⇐⇒ 𝑣 = 0.

Note that the above push forward vector fields is just an abuse of notation. Pushforwards

of vector fields are defined under special conditions (diffeomorphism or F-relatedness). But

since pullback of forms is always defined, it is tempting to write pointwise pushforward of

5



2 Riemannian Geometry

tangent vectors as the pushforward of the vectorfield itself. We don’t need a smooth vector

field on 𝑀 to define the form on 𝑀 .

We thus have,

Definition 2.0.3. A Riemannian immersion (embedding) is an immersion (embedding) 𝐹 :

𝑀 → 𝑁 such that 𝑔𝑀 = 𝐹 ∗ 𝑔𝑁 . They are also called isometric immersions.

Example 2.0.3. Let’s consider 𝑆𝑛(𝑅) = {𝑥 ∈ R𝑛+1 | |𝑥 | = 𝑅}, the Euclidean sphere of

radius 𝑅. We can induce a metric on 𝑆𝑛 by embedding 𝑆𝑛 ↩→ R𝑛+1. This is the canonical

metric on 𝑆𝑛.

Let’s debunk the isometry in isometric immersions.

Between R𝑘 and R𝑛 there are immersions like

𝑓 (𝑥1, . . . , 𝑥𝑘) = (𝑥1, . . . , 𝑥𝑘, 0, . . . , 0) or 𝑓 (𝑥1, . . . , 𝑥𝑘) = (𝑥1, . . . , 𝑥𝑘, 1, . . . ,−1) and

several more which are all also isometries!

But there are also other immersions.

1. Unit speed curve 𝑐 : R → R2, | ¤𝑐 (𝑡) | = 1 is a Riemannian immersion,

𝑐∗ 𝑔R2
(
𝛼, 𝛽

)
= 𝑔R2

(
𝛼 ¤𝑐 (𝑡), 𝛽 ¤𝑐 (𝑡)

)
= 𝛼𝛽 𝑔R2 ( ¤𝑐 (𝑡), ¤𝑐 (𝑡))

= 𝛼𝛽 = 𝑔R
(
𝛼, 𝛽

)
.

which need not be distance preserving! For example consider,

𝑡 ↦→ (cos 𝑡, sin 𝑡)

the (Riemannian) immersion of R onto 𝑆1. Similarly, consider an embedding, R ↩→

R2 as follows:

𝑡 ↦→
(
log

(
𝑡 +

√︁
1 + 𝑡2

)
,
√︁

1 + 𝑡2
)

6



2 Riemannian Geometry

2. The above examples allows us to construct a more general class of isomteric immer-

sions which are not distance preserving. For example,

𝐹 : R𝑘 −→ R𝑘+1

(𝑥1, . . . , 𝑥𝑘) ↦−→ 𝐹

(
(𝑥1, . . . , 𝑥

𝑘)
)
= (𝑐 (𝑥1), 𝑥2, . . . , 𝑥𝑘).

where 𝑐 is the unit speed curve from R to R2. We can realize cylinder as a Riemannian

immersion in R3 something like a half cylinder (a plane bent in a direction) as an em-

bedding in R3. These are not distance preserving maps but in the sense of curvature

these are just same as R2. A cylinder can be unrolled into a plane. They have a zero

Gaussian curvature! Much of the efforts soon would be to make such arguments in

higher dimensions and on abstract spaces.

There is also a concept of Riemannian Submersions, which we will skip.

Definition 2.0.4. A semi- or pseudo-Riemannian manifold is a maniofl with smoothly vary-

ing symmetric, bi-linear and non-degerate 2-form 𝑔 on each tangent space.

By non-degenrate, we mean: For each 𝑣 ∈ 𝑇𝑝𝑀 there exists 𝑤 ∈ 𝑇𝑝𝑀 such that

𝑔 (𝑣, 𝑤) ≠ 0. This is generalization of the Riemannian metric where we had 𝑔 (𝑣, 𝑣) > 0

for 𝑣 ≠ 0 (positive definite) satisfying the above condition.

Lemma 2.0.1. Each tangent space𝑇𝑝𝑀 of a semi-Riemannian manifold (𝑀, 𝑔) admits a

decomposition,

𝑇𝑝𝑀 = 𝑃 ⊕ 𝑁

such that 𝑔 is positive definite on 𝑃 and negative definite on 𝑁 . These subspaces are not

unique but their dimension is well-defined.

Definition 2.0.5. The index of a connected semi-Riemannian manifold is defined as the

dimension of the subspace 𝑁 on which 𝑔 is negative definite.

7
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Example 2.0.4. Let 𝑛 = 𝑛1 + 𝑛2 and R𝑛1,𝑛2 = R𝑛1 × R𝑛2 . There is a trivial decomposition,

R𝑛1,𝑛2 = R𝑛1 ⊕ R𝑛2 .Over which we can define a semi-Riemannian metric of index 𝑛2 as,

𝑔
(
( 𝑝, 𝑣), ( 𝑝, 𝑤)

)
= 𝑣1 · 𝑤1 − 𝑣2 · 𝑤2

Minkowski space-time is a 1-index semi-Riemannian manifold R𝑛,1.

Example 2.0.5. The family of Hyperbolic spaces 𝐻 𝑛(𝑅) ⊂ R𝑛,1.

The hyperboloids embedded in R𝑛,1 are defined by,

(𝑥1)2 + · · · + (𝑥𝑛)2 − (𝑥𝑛+1)2 = −𝑅2.

We denote the branch with 𝑥𝑛+1 > 0 by 𝐻 𝑛(𝑅).

InfactR𝑛+1 induces a Riemannian metric on𝐻 𝑛(𝑅). If 𝑣 = (𝑣1, . . . , 𝑣𝑛, 𝑣𝑛+1) ∈ 𝑇𝑝𝐻 𝑛(𝑅), 𝑝 ∈

𝐻 𝑛(𝑇 ) then since 𝐻 𝑛(𝑅) is a level set, we have

𝑣1 𝑝1 + · · · + 𝑣𝑛 𝑝𝑛 − 𝑣𝑛+1 𝑝𝑛+1 = 0.

So,

𝑔𝐻 𝑛 (𝑅) (𝑣, 𝑣) =
(
𝑣1

)2
+ · · · + (𝑣𝑛)2 −

(
𝑣𝑛+1 𝑝𝑛+1

)2
.

and one can show using Cauchy-Shwarz that this is positive definite. 𝐻 𝑛 ≡ 𝐻 (1) is

usually called the hyperbolic n-space.

Note that in Euclidean space, we could write the volume of parallelopiped formed by

n-vectors as,

𝑣𝑜𝑙 (𝑣1, . . . , 𝑣𝑛) = 𝑑𝑒𝑡 [ 𝑔 (𝑣𝑖 , 𝑒𝑗 )] = 𝑑𝑒𝑡 [𝑣1, . . . , 𝑣𝑛]

which is valid over any other positively oriented orthonormal basis.
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Definition 2.0.6. We define the volume form for any oriented Riemannian manifold
(
𝑀, 𝑔

)
to be the n-form given by,

𝑣𝑜𝑙𝑔 (𝑣1, . . . , 𝑣𝑛) = 𝑣𝑜𝑙 (𝑣1, . . . , 𝑣𝑛) = 𝑑𝑒𝑡 [ 𝑔 (𝑣𝑖 , 𝑒𝑗 )]

where 𝑒1, . . . , 𝑒𝑛 is any positively oriented orthonormal basis. If the manifold is not oriented

or orientable then we can use 𝐸1, . . . , 𝐸𝑛 an orthogonal local frame on 𝑀 and declare it to be

positive and define the volume form locally by,

𝑣𝑜𝑙 (𝑋1, . . . , 𝑋𝑛) = 𝑑𝑒𝑡 [ 𝑔 (𝑋𝑖 , 𝐸𝑗 )] .

The height of arbitrary vector 𝑋 in the ith coordinate is given by 𝑣𝑜𝑙 (𝐸1, . . . , 𝑋 , . . . , 𝐸𝑛) =

𝑔 (𝑋 , 𝐸𝑖).

2.1 Isometry Groups

For a Riemannian manifold (𝑀, 𝑔) we denote the group of Riemannian isometries 𝐹 :(
𝑀, 𝑔

)
→

(
𝑀, 𝑔

)
by 𝐼 𝑠𝑜(𝑀, 𝑔) or 𝐼 𝑠𝑜(𝑀 )

Definition 2.1.1. The isotropy at 𝑝 denoted by 𝐼 𝑠𝑜𝑝 (𝑀, 𝑔) is the (stabilizer) subgroup of

𝐼 𝑠𝑜(𝑀, 𝑔) such that 𝐹 ( 𝑝) = 𝑝.

It is easy to see that the isotropy is a subgroup of 𝐼 𝑠𝑜. The differential of any isometry

will be an orthogonal matrix (locally) which form a subgroup of𝐺𝐿(𝑛,R𝑛).

Definition 2.1.2. A Riemannian manifold is said to be homogenous if its isometry group acts

transitively, i.e. for any 𝑝, 𝑞 ∈ 𝑀, ∃𝐹 ∈ 𝐼 𝑠𝑜(𝑀, 𝑔) such that 𝐹 ( 𝑝) = 𝑞.

Example 2.1.1. The isometry group of the Euclidean space R𝑛 is given by,

9
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𝐼 𝑠𝑜(𝑀, 𝑔) = R𝑛 ⋊𝑂 (𝑛) = {𝐹 : R𝑛 → R𝑛 | 𝐹 (𝑥) = 𝑣 +𝑂𝑥, 𝑣 ∈ R𝑛, 𝑂 ∈ 𝑂 (𝑛)}

⇐= : Note that 𝐹 is a difeeomorphism. And the differential map 𝐹∗ is just the orthogonal

matrix𝑂 ∈ 𝑂 (𝑛), which preserves the inner product.

=⇒ : Suppose 𝐹 is an arbitrary isometry. Then𝐺 (𝑥) = 𝐹 (𝑥)−𝐹 (0) also defines an isometry

(the differential is unchanged). Consider also the map𝐺∗0(𝑥) = 𝐺∗0𝑥, 𝑥 ∈ R𝑛. 𝐺∗0 ∈ 𝑂 (𝑛),

since 𝐹∗0 ∈ 𝑂 (𝑛). So, 𝐺 and 𝐺∗ are both Riemannian Isometries with 𝐺 (0) = 𝐺∗0(0)

and same differentials at 0. By a uniqueness result of Riemannian isometries, 𝐺 = 𝐺∗0.

Thus 𝐼 𝑠𝑜0(R𝑛) = 𝑂 (𝑛). Same is true for any point 𝑝 ∈ R𝑛. And 𝐹 (𝑥) is thus of the form

𝐹 (0) +𝑂𝑥, for some 𝐹 (0) ∈ R𝑛, 𝑂 ∈ 𝑂 (𝑛). So, R𝑛 ≃ 𝐼 𝑠𝑜/𝐼 𝑠𝑜𝑝!

Lemma 2.1.1. Any homogenous space 𝑀 = 𝐼 𝑠𝑜(𝑀 )/𝐼 𝑠𝑜𝑝 (𝑀 ).

Proof. At the level of sets, this is clear. Just map [𝐹 ] = {𝐺 ∈ 𝐼 𝑠𝑜 | 𝐹 − 𝐺 ∈ 𝐼 𝑠𝑜𝑝} ∈

𝐼 𝑠𝑜/𝐼 𝑠𝑜𝑝 ↦→ 𝐹 ( 𝑝) ∈ 𝑀 which is well defined. And since for any 𝑞 ∈ 𝑀 (and given

𝑝 ∈ 𝑀 ), we have by homogenity, 𝐹 ∈ 𝐼 𝑠𝑜 such that 𝐹 ( 𝑝) = 𝑞. So map 𝑞 ↦→ [𝐹 ] . □

Example 2.1.2. For spheres 𝑆𝑛(𝑅) ⊂ R𝑛+1,

𝐼 𝑠𝑜
(
𝑆𝑛(𝑅), 𝑔𝑆𝑛 (𝑅)

)
= 𝑂 (𝑛 + 1) = 𝐼 𝑠𝑜0

(
R𝑛+1, 𝑔R𝑛+1

)
⇐= : Since we induce the metric on 𝑆𝑛(𝑅) from R𝑛+1, 𝑂 (𝑛 + 1) being the isometry

group of R𝑛+1 is also an isometry subgroup of 𝑆𝑛(𝑅).

=⇒ : Consider an arbitrary isometry 𝐹 ∈ 𝐼 𝑠𝑜(𝑆𝑛(𝑅)). We can construct an orthogonal

matrix out of this isometry,

𝑂 =

[
1
𝑅
𝐹 (𝑅𝑒1) 𝐹∗𝑅𝑒1 (𝑒2) · · · 𝐹∗𝑅𝑒1 (𝑒𝑛+1)

]
.
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To see this, note:

• 𝑇𝑅𝑒1𝑆𝑛 = 𝐹 (𝑅𝑒1)⊥. So, 𝐹∗𝑒1 (𝑒𝑖) ⊥ 𝐹 (𝑅𝑒1).

• {𝑒𝑖}𝑖=2,...,𝑛+1 forms a basis for𝑇𝑅𝑒1𝑆𝑛(𝑅) for the same reason as above. And since 𝐹∗ is

a linear isometry, {𝐹∗𝑒1 (𝑒𝑖)}𝑖=2,...,𝑛+1 forms an orthonormal basis for𝑇𝐹 (𝑅𝑒1)𝑆𝑛(𝑅).

So,𝑂 ∈ 𝑂 (𝑛 + 1) and defines a Riemannian Isometry satisfying𝑂 (𝑅𝑒1) = 𝐹 (𝑅𝑒1) and

𝐹∗𝑅𝑒1 = 𝑂𝑅𝑒1 = 𝑂. Thus by uniqueness result, we must have 𝐹 = 𝑂 ∈ 𝑂 (𝑛 + 1).

Here, we find that 𝐼 𝑠𝑜𝑝 (𝑆𝑛(𝑅)) � 𝑂 (𝑛) for any 𝑝 ∈ 𝑆𝑛(𝑅). And 𝑆𝑛 ≃ 𝑂 (𝑛+1)/𝑂 (𝑛).

Example 2.1.3. Similarly for the Hyperbolic spaces 𝐻 𝑛(𝑅) one can show that,

𝐼 𝑠𝑜(𝐻 𝑛(𝑅)) = 𝑂+(𝑛, 1)

where 𝑂+(𝑛, 1) is the subgroup of 𝑂 (𝑛, 1) =
{
𝐿 : R𝑛,1 → R𝑛,1 | 𝑔 (𝐿𝑣, 𝐿𝑣) = 𝑔 (𝑣, 𝑣)

}
which preserve the condition 𝑥𝑛+1 > 0. The isotropy group is again given by 𝑂 (𝑛), and

𝑂+(𝑛 + 1) acts on 𝐻 𝑛(𝑅) transitively. So, 𝐻 𝑛(𝑅) = 𝑂+(𝑛 + 1)/𝑂 (𝑛).

2.2 Local Expression of Metrics

For a Riemannian manifold (𝑀, 𝑔), if 𝑋 − 1, . . . , 𝑋𝑛 forms a local frame over an open set

𝑈 of 𝑀 , we can use the dual frame (coframe) 𝜎 1, . . . , 𝜎 𝑛 to represent the metric locally as,

𝑔 (𝑣, 𝑤) = 𝑔
(
𝜎 𝑖 (𝑣)𝑋𝑖 , 𝜎 𝑗 (𝑣)𝑋𝑗

)
= 𝑔

(
𝑋𝑖 , 𝑋𝑗

)
𝜎 𝑖 𝜎𝑗 .

We have identified the components of 𝑣 = 𝑣𝑖𝑋𝑖 as 𝑣𝑖 = 𝜎 𝑖 (𝑣) usign the dual basis.

We thus have the following frame representation of a metric,

11
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𝑔 = 𝑔

(
𝑋𝑖 , 𝑋𝑗

)
𝜎 𝑖 ⊗ 𝜎 𝑥𝑗 = 𝑔𝑖𝑗 𝑠𝑖 𝑔𝑚𝑎𝑖 𝜎 𝑗 .

This defines a symmetric positive definite matrix [ 𝑔𝑖𝑗 ] .

In particular, on any chart (𝑈 , 𝑥1, . . . , 𝑥𝑛) we can use the coordinate 1-forms 𝑑𝑥1, . . . , 𝑑𝑥𝑛

which forms a local frame of M to write the metric as

𝑔 = 𝑔

(
𝜕𝑖 , 𝜕𝑗

)
𝑑𝑥 𝑖 ⊗ 𝑑𝑥𝑗 = 𝑔𝑖𝑗𝑑𝑥 𝑖𝑑𝑥𝑗

Example 2.2.1. The canonical metric on R𝑛 in the identity chart can be expressed as,

𝑔 = 𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 =

𝑛∑︁
𝑖=1

(
𝑑𝑥 𝑖

)2
.

Example 2.2.2. On R2 we can write the metric in polar charts in a region excluding a half-

line (say positive X-axis),

𝑔 = 𝑑𝑟2 + 𝑟2𝑑𝜃2.

This follows immediately from the relation with cartesian charts, 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃 .

and 𝑔 = 𝑑𝑥2 + 𝑑𝑦2.

Example 2.2.3 (Surface of revolution in R3). Starting with an injective profile curve 𝑐 :

𝐼
𝑜 𝑝𝑒𝑛

⊂ R → R3 given by

𝑐 (𝑡) = (𝑟 (𝑡), 0, 𝑧(𝑡)) ,

where 𝑟 (𝑡) > 0, we can define the surface of revolution via,

(𝑡, 𝜃) ↦→ 𝑓 (𝑡, 𝜃) = (𝑟 (𝑡) cos 𝜃, 𝑟 (𝑡) sin 𝜃, 𝑧(𝑡)) .
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Denote, 𝑋 = 𝑓 (R2)

In neighborhoods of points where 𝑓 is an immersion, we can pushforward the vector

fields (since f is injective), 𝜕𝑡 , 𝜕𝜃 to 𝑋 defining a natural dual local frame, 𝑑𝑡, 𝑑𝜃 on 𝑋 . We

can then induce the metric on 𝑋 in this frame using the Euclidean metric 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

of R3. This is easy since we already have, 𝑥 (𝑡, 𝜃), 𝑦(𝑡, 𝜃), 𝑧(𝑡, 𝜃). We find,

𝑔 = ( ¤𝑟2 + ¤𝑧2)𝑑𝑡2 + 𝑟2𝑑𝜃2.

If we parametrize the curve by arc length i.e ¤𝑟2 + ¤𝑧2 = 1 =⇒ | ¤𝑟 | < 1,

𝑔 = 𝑑𝑡2 + 𝑟2𝑑𝜃2.

We can define a broader class of metric of above type on a manifold 𝐼 × 𝑆1, using the

frame 𝜕𝑡 , 𝜕𝜃 and coframe 𝑑𝑡, 𝑑𝜃 ,

𝑔 = 𝜂2(𝑡)𝑑𝑡2 + 𝜌2(𝑡)𝑑𝜃2,

which do not necessarily arise from surface of revolution.

We can generalize this to metrics on 𝐼 × 𝑆𝑛−1 of type

𝑔 = 𝑑𝑡2 + 𝜌2(𝑡)𝑑𝑠2𝑛−1

where 𝑑𝑠2
𝑛−1 is the canonical metric on 𝑆𝑛−1. Smoothness of the metric at the origin ofR𝑛 for

cases where 𝜌(0) = 0 however needs futher analysis, and conditions on 𝜌(𝑡) can be derived.

Such metrics are called rotationally symmetric.

Fundamental examples for such metrics can be realised over the manifolds which we dis-

cussed above with𝑂 (𝑛) ⊂ 𝐼 𝑠𝑜.

Example 2.2.4 (Hyperbolic, Euclidean, Spherical spaces in one sweep). 𝑆2(𝑅) is a surface

of revolution of the following curve (circle),

𝑡 ↦→ 𝑅

(
sin

( 𝑡
𝑅

)
, 0, cos

( 𝑡
R

))
.
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So the metric induced is,

𝑑𝑡2 + 𝑅2 sin2
( 𝑡
𝑅

)
𝑑𝜃2.

By letting 𝑅→ 𝑖𝑅, we can also rewrite this as

𝑑𝑡2 + 𝑅2 sinh2( 𝑡
𝑅
)𝑑𝜃2.

which precisely comes from the revolution of the curve

𝑡 ↦→ 𝑅

(
sinh

( 𝑡
𝑅

)
, 0, cosh

( 𝑡
𝑅

))
induced by the standard metric on R2,1.

We can identify the functions 𝜌(𝑡) in the above cases with the unique solution to,

¥𝑥 (𝑡) + 𝑥 (𝑡) = 0

𝑥 (0) = 0

¤𝑥 (0) = 1.

depending on the sign of 𝑘. Denote the solutions as 𝑠𝑛𝑘.

We thus write the 1-parameter family of metrics

𝑑𝑡2 + 𝑠𝑛2
𝑘
(𝑡)𝑑𝜃2

which corresponds to the following rotationally symmetric spaces depending on the value

of 𝑘

𝐼 × 𝑆1 𝑖 𝑠𝑜𝑚𝑒𝑡𝑟𝑦
=


𝑆2

(
1√
𝑘

)
𝑘 > 0

R2 𝑘 = 0
𝐻 2

(
1√
−𝑘

)
𝑘 < 0.
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This holds true even when we consider the generalized metrics of type,

𝑑𝑡2 + 𝑠𝑛2
𝑘
(𝑡)𝑑𝑠2𝑛−1

on 𝐼 × 𝑆𝑛−1.

2.3 Musical Isomorphisms

Using the metric, one can define isomorphisms between tensors of ranks (𝑠, 𝑡) and (𝑠 − 𝑘, 𝑡 + 𝑘)

where 𝑠−𝑘 > 0, 𝑡+𝑘 > 0. This is essentially because𝑇𝑀 � 𝑇 ∗𝑀 as Riemannian manifolds

(also). A vector 𝑣 ∈ 𝑇𝑀 can be mapped to 𝑔 (𝑣, .) ∈ 𝑇 ∗𝑀.

Suppose {𝐸𝑖} is a frame of𝑇𝑀 and {𝜎𝑖} its coframe.

Let’s find the covector corresponding to 𝐸𝑖 defined by the above isomorphism. Call it

𝐸∗
𝑖
.

𝐸∗
𝑖 (𝑣) = 𝑔 (𝐸𝑖 , 𝑣)) = 𝑔

(
𝐸𝑖 , 𝐸𝑗

)
𝜎 𝑗 (𝑣).

So, 𝐸𝑖 ↦→ 𝑔𝑖𝑗 𝜎
𝑗 .

And similarly, let 𝜎 𝑖 be mapped to 𝑣𝑒𝑐 𝑖 , such that 𝑔
(
𝑣𝑒𝑐 𝑖 , 𝑣

)
= 𝜎 𝑖 (𝑣) for all vector fields

𝑣 of𝑇𝑀 . In particular,

𝑣𝑒𝑐 𝑖𝑗 𝑔

(
𝐸𝑗 , 𝐸𝑘

)
= 𝛿 𝑖

𝑘
𝑖

𝑣𝑒𝑐 𝑖𝑗 = 𝑔 𝑖𝑗 .

where we have denoted the inverse of 𝑔 with upper indices.

So, 𝜎 𝑖 → 𝑔 𝑖𝑗𝐸𝑗 .

This way we can raise and lower indices of any (𝑠, 𝑡) tensor in T (𝑠,𝑡) (𝑀 ) which can also

be uniquely written as a (𝑠 − 𝑘, 𝑡 − 𝑘) tensor for each 𝑘. Let’s see this formally through ex-

amples.
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Example 2.3.1. Consider a (1,1) tensor𝑅𝑖𝑐 = 𝑅𝑖𝑐 𝑖
𝑗
𝐸𝑖⊗𝜎 𝑗 .This can equally be represented

by a (0,2) tensor,

𝑅𝑖𝑐 = 𝑅𝑖𝑐𝑖𝑗 𝜎
𝑖 ⊗ 𝜎 𝑗 .

where 𝑅𝑖𝑐𝑖𝑗 is obtained by mapping 𝐸𝑖 , 𝐸𝑗 to its covectors. That is, 𝑅𝑖𝑐𝑗𝑘 = 𝑅𝑖𝑐 𝑖𝑗 𝑔𝑖𝑘. We

can also represent it as a (2, 0) tensor as,

𝑅𝑖𝑐 = 𝑅𝑖𝑐 𝑖𝑗𝐸𝑖 ⊗ 𝐸𝑗

= 𝑅𝑖𝑐 𝑖
𝑘
𝑔𝑘𝑗𝐸𝑖 ⊗ 𝐸𝑗 .

Example 2.3.2. Consider a (1,3) tensor 𝑅 = 𝑅𝑖
𝑗𝑘𝑙
𝐸𝑖 ⊗ 𝜎 𝑗 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙 . This has following

equivalent representations,

As (0,4) tensor,

𝑅 = 𝑅𝑚𝑗𝑘𝑙 𝜎
𝑚 ⊗ 𝜎 𝑗 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙

= 𝑅𝑖
𝑗𝑘𝑙
𝑔𝑖𝑚𝜎

𝑚 ⊗ 𝜎 𝑗 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙 .

As a (2,2) tensor,

𝑅 = 𝑅𝑖𝑚
𝑘𝑙
𝐸𝑖 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙

= 𝑅𝑖
𝑗𝑘𝑙
𝑔𝑗𝑚𝐸𝑖 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙 .

One could have raised the other indices instad as well which defines another (2,2) tensor

representation,
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𝑅 = 𝑅𝑖𝑚
𝑗 𝑙
𝐸𝑖 ⊗ 𝜎 𝑗 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑙

= 𝑅𝑖
𝑗𝑘𝑙
𝑔𝑘𝑚𝐸𝑖 ⊗ 𝜎 𝑗 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑙 .

But all such (2,2) representations are same in the sense that they eat two vectors and two

covectors.

To summarise, the metric allows us to define the isomorphismsT (𝑠,𝑡) (𝑀 ) � T (𝑠−𝑘,𝑡−𝑘) (𝑀 ).

And further, there is an ordering difficulty for any tensor𝑇 (𝑠,𝑡) (𝑀 ). We can be more careful

by using a positional notation.

In the above example, the two (2,2) tensor representations can be written more carefully

as,

𝑅 = 𝑅𝑖𝑚
𝑘𝑙
𝐸𝑖 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑘 ⊗ 𝜎 𝑙

𝑅 = 𝑅𝑖 𝑚
𝑗 𝑙
𝐸𝑖 ⊗ 𝜎 𝑗 ⊗ 𝐸𝑚 ⊗ 𝜎 𝑙 .

Contractions.

We can also contract indices by taking the trace of tensors.

For a (1,1) tensor𝑇 = 𝑇 𝑖
𝑗
𝐸𝑖 ⊗ 𝜎 𝑗 this is just 𝐶 (𝑇 ) = 𝑇 𝑖

𝑖
. For the (0,2) or (2,0) represen-

tation of 𝑇 , we can convert this to (1,1) representation first and then take trace, 𝐶 (𝑇 ) =

𝑇𝑖𝑗 𝑔
𝑖𝑗 = 𝑇 𝑖𝑗 𝑔𝑖𝑗 = 𝑇 𝑖

𝑖
. These equalities immediately follow from the relations between

𝑇 𝑖
𝑗
, 𝑇 𝑖𝑗 , 𝑇𝑖𝑗 .

Inner product of tensors.

The Euclidean norm can be defined by, |𝑇 | = 𝑡𝑟 (𝑇 ◦𝑇 ∗). 𝑇 ∗ is just a reordering of

components of𝑇 which is clear in the positional notation. It is basically dual to the multi-

linear map𝑇 (or the adjoint).
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2.4 Derivatives

2.4.1 Gradient

Definition 2.4.1. Let
(
𝑀, 𝑔

)
be a Riemannian manifold and 𝑓 ∈ 𝐶∞(𝑀 ). Then we

define the gradient vector field as 𝑔𝑟𝑎𝑑𝑓 = ∇𝑓 satisfying 𝑔
(
𝑔𝑟𝑎𝑑𝑓 , 𝑣

)
= 𝑑𝑓 (𝑣) for all 𝑣 ∈

𝑇𝑀 .That is, 𝑔𝑟𝑎𝑑𝑓 is the covariant version of 𝑑𝑓 ,

𝑑𝑓 ↦→ 𝑔𝑟𝑎𝑑𝑓

mapped under the isomorphism between𝑇𝑀𝑎𝑛𝑑𝑇 ∗𝑀.

Remark. Note that the above isomorphism is metric dependent here. Any vector space

𝑉 and𝑉 ∗ are isomorphic but there is no canonical map - it depends on the basis we choose

over𝑉 . However if𝑉 is equipped with an inner product (here 𝑔 on 𝑇𝑀 ), we can define

a canonical map that maps vectors to covectors. So, gradient vector fields are well defined

(i.e. invariantly) precisely because of the Riemannian structure. For example, if one defines

𝑔𝑟𝑎𝑑𝑓 = 𝜕𝑖 ( 𝑓 )𝜕𝑖 where we know that 𝑑𝑓 = 𝜕𝑖 ( 𝑓 )𝑑𝑥 𝑖 works only as a caratesian definition.

In spherical polar coordinates, we know that the form looks different.

The metric thus gives an invariant definition of gradient vector field as follows,

𝑔𝑟𝑎𝑑𝑓 = ∇𝑓 = 𝑔 𝑖𝑗 𝜕𝑖 ( 𝑓 )𝜕𝑗

2.4.2 Lie Derivative

The idea of lie derivative is to keep track of change (of maps) along a vector field. Where

along is determined by the flow generated by the vector field. It is the first-order term in

their corresponding taylor expansion on the flow.

Consider a vector field 𝑋 ∈ 𝔛(𝑀 ) and the local flow 𝐹 𝑡 (𝑥) generated by it.
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For functions 𝑓 ∈ 𝐶∞(𝑀 ) the Lie derivative 𝐿𝑋 𝑓 is given by,

𝑓 (𝐹 𝑡 ( 𝑝)) = 𝑓 ( 𝑝) + 𝑡 (𝐿𝑋 𝑓 ) ( 𝑝) + O(𝑡2)

i.e.

𝐿𝑋 𝑓 ( 𝑝) = lim
𝑡→0

𝑓
(
𝐹 𝑡 ( 𝑝)

)
− 𝑓 ( 𝑝)

𝑡
.

This is basically 𝑑
𝑑𝑡

(
𝑓 ◦ 𝐹 𝑡

)
=

(
𝑓 ◦ 𝐹 𝑡

)′
= (𝐹 𝑡)′( 𝑓 ) which is precisely the directional

derivative of 𝑓 , 𝑋 ( 𝑓 ) or 𝑑𝑓 (𝑋 ),

𝐿𝑋 𝑓 = 𝐷𝑋 𝑓 = 𝑋 ( 𝑓 ).

Lie derivative is essentially a generalization of this operation to other objects on mani-

folds. As we will see this operation plays an important role.

Consider another vector field𝑌 , the question we ask is how does𝑌 | 𝑝 compare with its

value obtained via a pull-back due to the flow starting at 𝑝 due to 𝑋 . Here, by pull-back we

mean the pushforward 𝐹 −𝑡
∗ (𝑌 |𝐹 ( 𝑡)) ∈ 𝑇𝑝𝑀 . That is,

𝐹 −𝑡
∗ (𝑌 |𝐹 𝑡 ( 𝑝)) = 𝑌 | 𝑝 + 𝑡 (𝐿𝑋𝑌 ) | 𝑝 + O(𝑡2)

or,

𝐿𝑋𝑌 | 𝑝 − lim
𝑡→0

𝐹 −𝑡
∗ (𝑌 |𝐹 𝑡 ( 𝑝)) −𝑌 | 𝑝

𝑡
.

This infact turns out to be the Lie Bracket of the vector fields 𝑋 and𝑌 !

Proposition 2.4.1. If 𝑋 ,𝑌 are vector fields on 𝑀 , then 𝐿𝑋𝑌 = [𝑋 ,𝑌 ] .

Proof. Evaluate RHS of 𝐿𝑋𝑌 | 𝑝 on 𝑓𝑝 ∈ 𝐶∞
𝑝 (𝑀 ),
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(
𝐹 −𝑡
∗

(
𝑌 |𝑡

𝐹
( 𝑝)

)
−𝑌 | 𝑝

)
( 𝑓𝑝) = 𝐹 −𝑡

𝐹 𝑡 ( 𝑝)

(
𝑌 |𝐹 𝑡 ( 𝑝)

)
( 𝑓𝑝) −𝑌 | 𝑝 ( 𝑓𝑝)

= 𝑌𝐹 𝑡 ( 𝑝)
( (
𝑓 ◦ 𝐹 −𝑡 )

𝐹 𝑡 ( 𝑝)

)
−𝑌 | 𝑝 ( 𝑓𝑝)

= 𝑌
(
𝑓 ◦ 𝐹 −𝑡 ) ◦ 𝐹 𝑡 −𝑌 ( 𝑓 )

= 𝑌
(
𝑓 ◦ 𝐹 −𝑡 ) − 𝑡𝑋 (

𝑌
(
𝑓 ◦ 𝐹 −𝑡)

) )
+ O(𝑡2) −𝑌 ( 𝑓 )

= 𝑌 𝑓 − 𝑡𝑌 (𝑋 ( 𝑓 )) + 𝑡𝑋 (𝑌 ( 𝑓 )) −𝑌 ( 𝑓 ) + O(𝑡2)

= 𝑡 [𝑋 ,𝑌 ] 𝑓 .

Thus, 𝐿𝑋𝑌 = [𝑋 ,𝑌 ] . □

We can also take Lie Derivative of a (0,k) tensor T as follows,

𝐹 𝑡∗𝑇 = 𝑇 + 𝑡 (𝐿𝑋 )𝑌 + O(𝑡2).

That is,

(𝐿𝑋𝑇 ) (𝑌1, . . . ,𝑌𝑘) = lim
𝑡→0

𝐹 𝑡∗𝑇 −𝑇
𝑡

.

Evaluating RHS on vector field 𝑌 one can easily show the following formula of Lie

Derivative in this case.

Proposition 2.4.2. If 𝑋 is a vector feld and𝑇 a (0, 𝑘)-tensor on 𝑀 , then

(𝐿𝑋𝑇 ) (𝑌1, . . . ,𝑌𝑘) = 𝐷𝑋 (𝑇 (𝑌1, . . . ,𝑌𝑘)) −
𝑘∑︁
𝑖=1
𝑇 (𝑌1, . . . , 𝐿𝑋𝑌𝑖 , . . . ,𝑌𝑘) .

𝐿𝑋 , like in case of functions and vector fields acting as derivation, obeys product rule

when acted on (0, 𝑘)-tensors.

Proposition 2.4.3. If𝑇1, 𝑇2 are two (0, 𝑘) tensors, then

𝐿𝑋 (𝑇1 ⊗ 𝑇2) = (𝐿𝑋𝑇1) ⊗ 𝑇2 +𝑇1 ⊗ (𝐿𝑋𝑇2)
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If 𝑋𝑝 = 0 at some point 𝑝, then 𝐹 𝑡 ( 𝑝) = 𝑝 for all 𝑡 . So,

𝐿𝑋𝑌 | 𝑝 = lim
𝑡→0

𝐹 −𝑡
∗ (𝑌 | 𝑝) −𝑌 | 𝑝

𝑡

=
𝑑

𝑑𝑡

(
𝐹 −𝑡
∗

) ��
𝑡=0

(
𝑌 | 𝑝

)
.

𝐿𝑋 = 𝑑
𝑑𝑡
𝐹 −𝑡
∗ |𝑡=0 whenever 𝑋𝑝 = 0. And for 1-forms, 𝐿𝑋 𝜃 = 𝜃 ◦ 𝐿𝑋 whenever 𝑋𝑝 = 0,

which only depends on the value of 𝜃 at 𝑝. The same is true of (0, 𝑘)-tensors.

Lie Derivatives can also be defined for other general tensors and maps similarly. In par-

ticular, we can take Lie Derivative of the Lie Bracket vector field and on a Lie derivative 𝐿𝑌𝑇

define the following on any tensor𝑇 ,

(𝐿𝑋 𝐿)𝑌 𝑇 = 𝐿𝑋 (𝐿𝑌𝑇 ) − 𝐿𝐿𝑋𝑌𝑇 − 𝐿𝑌 (𝐿𝑋𝑇 ) = [𝐿𝑋 , 𝐿𝑌 ]𝑇 − 𝐿[𝑋 ,𝑌 ]𝑇 .

This infact vanishes on all tensors.

Proposition 2.4.4 (Generalized Jacobi Identity). For all vector fields 𝑋 ,𝑌 and tensors𝑇

(𝐿𝑋 𝐿)𝑌 𝑇 = 0.

When acted on a vector field 𝑍 . This reduces to the usual Jacobi identity satisfied by the

Lie Bracket 𝑋 ,𝑌 , 𝑍 .

Connection to Exterior Derivative.

Note that we have a definition of exterior derivative on 𝑤 ∈ Ω𝑘 (𝑀 ) through the for-

mula,
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𝑑𝑤 (𝑋1, . . . , 𝑋𝑘+1) =
𝑘+1∑︁
𝑖=1

(−1) 𝑖𝑋𝑖𝑤
(
𝑋1, . . . , �̂�𝑖 , . . . , 𝑋𝑘+1

)
+
𝑘+1∑︁
𝑖,𝑗

(−1) 𝑖+𝑗 𝑤
(
[𝑋𝑖 , 𝑋𝑗 ], 𝑋1, . . . , 𝑋𝑗 , . . . , 𝑋𝑘+1

)
This can be written in terms of the Lie derivative as,

𝑑𝜔(𝑋0, 𝑋1, . . . , 𝑋𝑘) =
1
2

𝑘∑︁
𝑖=0

(−1) 𝑖 (𝐿𝑋𝑖𝜔) (𝑋0, . . . , �̂�𝑖 , . . . , 𝑋𝑘)

+ 1
2

𝑘∑︁
𝑖=0

(−1) 𝑖𝐿𝑋𝑖
(
𝜔(𝑋0, . . . , �̂�𝑖 , . . . , 𝑋𝑘)

)
In particular, we have on 1-form

𝑑𝑤 (𝑋 ,𝑌 ) = 𝐷𝑋 (𝑤(𝑌 )) − 𝐷𝑌 (𝑤(𝑋 )) − 𝑤 ( [𝑋 ,𝑌 ]) .

The following definitions are worth noting.

Definition 2.4.2 (Divergence, Laplacian and Hessian). Let (𝑀, 𝑔) be a Riemannian Man-

ifold.

1. The divergence of a vector field 𝑋 is defined by its action on the volume form - it descsribees

the change in the volume form along the flow due to X, i.e. 𝐿𝑋 𝑣𝑜𝑙 = (𝑑𝑖𝑣𝑋 )𝑣𝑜𝑙.

2. The Laplacian of a function Δ𝑓 = 𝑑𝑖𝑣∇𝑓 .

3. The Hessian of a function is a (0, 2) tensor,

𝐻𝑒𝑠𝑠 𝑓 (𝑋 ,𝑌 ) = 1
2

(
𝐿∇𝑓 𝑔

)
(𝑋 ,𝑌 ).

The above defintion of Hessian is indeed a generalization from that on Euclidean spaces.

The Laplacian is the trace of the Hessian and onR𝑛, the Hessian reduces to it’s familiar form.
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Let 𝐸1, . . . , 𝐸𝑛 be a positively oriented orthonormal frame. Then,

𝑑𝑖𝑣𝑋 = (𝐿𝑋 𝑣𝑜𝑙) (𝐸1, . . . , 𝐸𝑛)

= 𝐿𝑋 (𝑣𝑜𝑙 (𝐸1, . . . , 𝐸𝑛)) −
∑︁

𝑣𝑜𝑙 (𝐸1, . . . , 𝐿𝑋 𝐸𝑖 , . . . , 𝐸𝑛)

= −
∑︁

𝑔 (𝐿𝑋 𝐸𝑖 , 𝐸𝑖)

=
1
2

∑︁ (
𝐿𝑋

(
𝑔 (𝐸𝑖 , 𝐸𝑖)

) )
− 𝑔 (𝐿𝑋 𝐸𝑖 , 𝐸𝑖) − 𝑔 (𝐸𝑖 , 𝐿𝑋 𝐸𝑖)

=
∑︁ 1

2
(
𝐿𝑋 𝑔

)
(𝐸𝑖 , 𝐸𝑖) .

In writing above, we have used the behavior of volume form and that 𝑔 is symmetric,

𝑔 (𝐸𝑖 , 𝐸𝑖) =𝑉 𝑜𝑙 (𝐸1, . . . , 𝐸𝑛) = 1.

For a Euclidean space with standard metric, consider 𝑓 : R𝑛 → R. Then,

𝐿∇𝑓
(
𝛿𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗
)
= 𝐿∑

𝜕𝑗 𝑓 𝜕𝑗

∑︁
𝑑𝑥 𝑖𝑑𝑥 𝑖

=
∑︁

𝐿𝜕𝑗 𝑓 𝜕𝑗 𝑑𝑥
𝑖𝑑𝑥 𝑖

=
∑︁ (

𝐿𝜕𝑗 𝑓 𝜕𝑗 𝑑𝑥
𝑖
)
𝑑𝑥 𝑖 +

∑︁
𝑑𝑥𝑖

(
𝐿𝜕𝑗 𝑓 𝜕𝑗 𝑑𝑥

𝑖
)

=
∑︁

𝜕𝑗 𝑓

(
𝐿𝜕𝑗 𝑑𝑥

𝑖
)
+

∑︁
𝜕𝑗 𝑓 𝑑𝑥

𝑖
(
𝐿𝜕𝑗 𝑑𝑥

𝑖
)

= 2
∑︁

𝑑

(
𝜕𝑗 𝑓

)
𝑑𝑥 𝑖

= 2
∑︁

𝜕𝑗 𝑖 𝑓 𝑑𝑥
𝑗𝑑𝑥 𝑖

= 2𝐻𝑒𝑠𝑠 𝑓 .

2.5 Connection

In order to generalize the notion of constant or parallel vector fields, like in R𝑛 we introduce

the notion of covariant derivative. These are not just vector fields 𝑋 = 𝑋 𝑖𝜕𝑖 with constant

functions 𝑋 𝑖 .

There are two ways we can keep track of change in a vector field, it could be a gradient

of a function, which is captured by the 2-form 𝑑𝜃𝑋 which is the exterior derivative of the

23



2 Riemannian Geometry

dual 1-form of 𝑋 . That is,𝜃𝑋 (𝑌 ) = 𝑔 (𝑋 ,𝑌 ) and 𝑋 = ∇𝑓 =⇒ 𝑑𝜃𝑋 = 0!. Further, we

can also ask how the metric changes along the flow due to 𝑋 , which is captured by the Lie

derivative 𝐿𝑋 𝑔. It’s interesting to note the relevance of Hessian here. A vector field whose

Lie Derivative vanishes is called a Killing field.

Lemma 2.5.1. 𝐿𝑋 𝑔 = 0 ⇐⇒ the flow 𝐹 𝑡 generated by 𝑋 are isometries.

Consider R2 with the standard metric. If a vector field 𝑋 is gradient ∇𝑓 , then 𝑑𝜃𝑋 =

0 and the change in metric due to 𝑋 is essentially 2𝐻𝑒𝑠𝑠 𝑓 . So, 𝑋 is killing if and only if

𝜕𝑖𝑋
𝑗 + 𝜕𝑗𝑋 𝑖 = 0. This gives us the familiar result,

𝑋 𝑖 = 𝛼𝑖𝑗 𝑥
𝑖 + 𝛽𝑖 ; 𝛼𝑖𝑗 = −𝛼𝑗

𝑖
.

In R𝑛 a vector field is constant if and only if it is both killing and a gradient field.

To generalize this we have the following tensorial result.

Proposition 2.5.2. The covariant derivative in R𝑛 is given by the implicit formula:

2𝑔 (∇𝑌 𝑋 , 𝑍) =
(
𝐿𝑋 𝑔

)
(𝑌 , 𝑍) + (𝑑𝜃𝑋 ) (𝑌 , 𝑍) .

Until now we have an idea of ∇𝑌 𝑋 only in cartesian coordinates, but the above tensorial

expression will be used to define the covariant derivative on arbitrary manifolds.

Proof. It suffices to consider caratesian form of ∇𝑌 𝑋 , as 𝜕𝑘𝑋 𝑖)𝜕𝑖 and commpute the right

hand side. □

What we are really interested in is the derivation of a vector field dueto another vector

field, depending linearly on it. Such an object is called an affine connection.

Theorem 2.5.3 (The Fundamental Theorem of Riemannian Geometry). The assignment

𝑋 ↦→ ∇𝑋 on (𝑀, 𝑔) is uniquely defined by the following properties:
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1. ∇𝑋 : 𝑌 ↦→ ∇𝑌 𝑋 is a (1, 1) tensor. That is,

∇𝛼𝑣+𝛽𝑤𝑋 = 𝛼∇𝑣𝑋 + 𝛽∇𝑤𝑋 .

2. 𝑋 ↦→ ∇𝑌 𝑋 is a derivation:

∇𝑌 (𝑋1 + 𝑋2) = ∇𝑌 𝑋1 + ∇𝑌 𝑋2,

∇𝑌 ( 𝑓 𝑋 ) =
(
𝐷𝑌 𝑓

)
𝑋 + 𝑓 ∇𝑌 𝑋 ..

for functions 𝑓 : 𝑀 → R.

3. Covariant differentiation is torsion free:

∇𝑋𝑌 − ∇𝑌 𝑋 = [𝑋 ,𝑌 ] .

4. Covariant differentiation is compatible with metric:

𝐷𝑍 𝑔 (𝑋 ,𝑌 ) = 𝑔 (∇𝑍𝑋 ,𝑌 ) + 𝑔 (𝑋 ,∇𝑍𝑌 ) .

The assignment satisfying (1) and (2) is called an affine connection. Further (3) and (4)

define a uniqe such connection called, Riemanniann or Levi-Civita connection.

Proof. We use the implicit definition of the covariant derivative to prove this theorem, and

the uniqueness result ensures there is no loss of generality. □

We will see the significance of Torsion free property and the metric compatibility later.

The following two lemmas describe the dependence of ∇𝑌 𝑋 | 𝑝 on 𝑋 . Note that the depen-

dence on Y is tensorial i.e linear in𝑌 .

Lemma 2.5.4. Let𝑀 be a manifold and ∇ an affine connection on𝑀 .If 𝑝 ∈ 𝑀 , 𝑣 ∈ 𝑇𝑝𝑀 ,

and 𝑋 ,𝑌 are vector fields on𝑀 such that 𝑋 = 𝑌 in a neighbordhood𝑈 ∋ 𝑝,then∇𝑣𝑋 = ∇𝑣𝑌 .
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Proof. Let 𝑓 : 𝑀 → Rbe a bump function vanishing in𝑀\𝑈 and 𝑓 ≡ 1 in a neighborhood

𝑉 ⊂ 𝑈 of 𝑝. So we have 𝑓 𝑋 = 𝑓 𝑌 on all of 𝑀 . Thus, at 𝑝:

∇𝑣 𝑓 𝑋 = 𝑓 ( 𝑝)∇𝑣𝑋 + 𝐷𝑣 ( 𝑓 )𝑋 ( 𝑝) = ∇𝑣𝑋 .

So, ∇𝑣𝑋 = ∇𝑣 𝑓 𝑋 = ∇𝑣 𝑓 𝑌 = ∇𝑣𝑌 . □

As expeected from a derivation, the covariant derivative of 𝑋 is a local property, and it

suffices to have a vector field defined on an open set around a point for it to make sense.

Infact something more stronger is true, it suffices for the vector field to be defined along a

curve.

Lemma 2.5.5. Let 𝑀 be a manifold and ∇ an affine connection on 𝑀 . If 𝑋 is a vector field

on 𝑀 and 𝑐 : 𝐼 → 𝑀 a smooth curve with ¤𝑐 (0) = 𝑣 ∈ 𝑇𝑝𝑀, then ∇𝑣𝑋 depends only on the

values of 𝑋 along 𝑐, i.e., if 𝑋 ◦ 𝑐 = 𝑌 ◦ 𝑐, then ∇ ¤𝑐𝑋 = ∇ ¤𝑐𝑌 .

Proof. Let 𝐸1, . . . , 𝐸𝑛 be a frame in the neighborhood of 𝑝, and𝑋 𝑖 ,𝑌 𝑖 the components of

vector fields which agree on the curve 𝑐. Then,

∇𝑣𝑌 = ∇𝑣
(
𝑌 𝑖𝐸𝑖

)
= 𝑌 𝑖 ( 𝑝)∇𝑣 (𝐸𝑖) + 𝐷𝑣𝑌 𝑖 | 𝑝𝐸𝑖 ( 𝑝)

= 𝑋 𝑖 ( 𝑝)∇𝑣 (𝐸𝑖) + 𝐷𝑣𝑋 𝑖 | 𝑝𝐸𝑖 ( 𝑝)

= ∇𝑣𝑋 .

□

From the above two lemmas, it is clear that it is possible to compute ∇ in local frames.

We will do that soon.

From the uniqueness of the Levi-Civita connection, we can evaluate its behaviour under

isometries.
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Proposition 2.5.6 (Naturality of the Levi-Civita Connection). Suppose (𝑀, 𝑔) and (�̃�, �̃�)

are Riemannian or pseudo-Riemannian manifolds with or without boundary, and let ∇ de-

note the Levi-Civita connection of 𝑔 and ∇̃ that of �̃� . If 𝜑 : 𝑀 → �̃� is an isometry, then

𝜑∗∇̃ = ∇.

2.5.1 Covariant Derivative of Tensors

The generalization of covariant derivative to general tensors will be important to derive use-

ful formale for Hessian, Laplacian, divergence andalong with giving using tools to probe

curvature (tensors).

The covariant derivative takes a (1,0)-tensor 𝑋 to a (1,1)-tensor ∇𝑋 . Similarly we let

(s,t)-tensor 𝑆 go to a (s,t+1)-tensor ∇𝑆 . We do this in a way which respects the product rule:

∇𝑆 (𝑋 ,𝑌1, . . . ,𝑌𝑡) = (∇𝑋 𝑆) (𝑌1, . . . ,𝑌𝑡)

= ∇𝑋 (𝑆 (𝑌1, . . . ,𝑌𝑡)) −
𝑡∑︁
𝑖=1
𝑆 (𝑌1, . . . ,∇𝑋𝑌𝑖 , . . . ,𝑌𝑡) .

Sending the second term of RHS to the LHS, we see the product rule. The definition

for 𝑠 ≥ 1 is similar.

Definition 2.5.1. A tensor 𝑆 is called parallel, if ∇𝑆 = 0.

In cartesian coordinates of Euclidean spaces, parallel tensors are precisely the constant

coefficient tensors. In particular, ∇𝑋 ≡ 0 for constant vector fields (irrespective of the coor-

dinates).

Proposition 2.5.7. On a Riemannian n-manifold (𝑀, 𝑔)

∇ 𝑔 = 0

∇𝑣𝑜𝑙 = 0.
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Proof. It is the metric compatibility of the covariant differentiation that directly ensures 𝑔 is

parallel. Evaluating ∇𝑋 𝑣𝑜𝑙 on an orthonormal frame 𝐸1, . . . , 𝐸𝑛 and using the metric com-

patibility immediately gives that 𝑣𝑜𝑙 is parallel too. □

The covariant derivative of the 1-form 𝑑𝑓 gives precisely the Hessian!

Proposition 2.5.8. If 𝑓 : (𝑀, 𝑔) → R, then(
∇𝑋 𝑑𝑓

)
(𝑌 ) = 𝑔

(
∇𝑋∇𝑓 ,𝑌

)
= 𝐻𝑒𝑠𝑠 𝑓 (𝑋 ,𝑌 ).

Definition 2.5.2. The adjoing to the covariant derivative on (s,t)-tensors is defined as

(∇∗𝑆) (𝑋2, . . . , 𝑋𝑡) = −
∑︁

(∇𝐸 𝑖 𝑆) (𝐸𝑖 , 𝑋2, . . . , 𝑋𝑡) ,

where 𝐸1, . . . , 𝐸𝑛 is a orthonormal frame. That is, the adjoint covariant derivative gives

out a (s,t-1) tensor!

Proposition 2.5.9. If 𝑋 is a vector field and 𝜃𝑋 the corresponding 1-form, then

𝑑𝑖𝑣𝑋 = −∇∗𝜃𝑋

The exterior derivative can now be written simply as,

𝑑𝑤 (𝑋0, . . . , 𝑋𝑘) =
∑︁

(−1) 𝑖
(
∇𝑋𝑖𝑤

) (
𝑋0, . . . , �̂�𝑖 , . . . , 𝑋𝑘

)
.

We can take second covariant derivative of a (s,t)-tensor, ∇2𝑆 as follows -

(
∇𝑋1,𝑋2𝑆

)
(𝑌1, . . . ,𝑌𝑡) =

(
∇𝑋1 (∇𝑆)

)
(𝑋2,𝑌1, . . . ,𝑌𝑡)

=
(
∇𝑋1

(
∇𝑋2𝑆

) )
(𝑌1, . . . ,𝑌𝑡) −

(
∇∇𝑋1𝑋2

)
(𝑌1, . . . ,𝑌𝑡) .

The second covariant derivative is not symmetric in the arguments and is a hallmark of

Riemannian geometry.
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We can also take covariant derivative of a covarariant derivative as,

(∇𝑋∇)𝑌 𝑇 = ∇𝑋 (∇𝑌𝑇 ) − ∇∇𝑋𝑌𝑇 − ∇𝑌 (∇𝑋𝑇 ).

The two covariant derivatives are related to each other via,

∇2
𝑋 ,𝑌𝑇 = (∇𝑋∇)𝑌 𝑇 + ∇𝑌 (∇𝑋𝑇 ) .

2.5.2 Connection in local form

In local coordinates,

∇𝑌 𝑋 = ∇𝑌 𝑖 𝜕𝑖𝑋
𝑗 𝜕𝑗

= 𝑌 𝑖∇𝜕𝑖𝑋
𝑗 𝜕𝑗

= 𝑌 𝑖 (𝜕𝑖𝑋 𝑖)𝜕𝑗 +𝑌 𝑖𝑋 𝑗∇𝜕𝑖 𝜕𝑗

= 𝑌 𝑖 (𝜕𝑖𝑋 𝑗 )𝜕𝑗 +𝑌 𝑖𝑋 𝑗Γ𝑘
𝑖𝑗
𝜕𝑘,

where we expanded ∇𝜕𝑖 𝜕𝑗 in local coordinates. We see that for different coordinate sys-

tems and general Riemannian manifolds, there is an extra correction term. We can find these

coefficients in terms of the metric using the implicit definition.

Γ𝑘𝑖𝑗 =
1
2 𝑔

𝑙𝑘
(
𝜕𝑗 𝑔𝑖 𝑙 + 𝜕𝑖 𝑔𝑗 𝑙 − 𝜕𝑙 𝑔𝑗 𝑖

)
=

1
2 𝑔

𝑘𝑙Γ𝑖𝑗 ,𝑙 =
1
2 𝑔

𝑘𝑙 𝑔

(
∇𝜕𝑖 𝜕𝑗 , 𝜕𝑙

)
.

The symbols, Γ𝑖𝑗 ,𝑘 are called the Christoffel symbols of first kind and Γ𝑘
𝑖𝑗

are called the

Christoffel symbols of second kind. Note that these area not tensors! Indeed as wealready

know,it is always possible to find coordinates such that Γ = 0 (but not in others). These are

the locally flat coordinates.

Normal Coordinates around a point 𝑝 ∈ 𝑀 :
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𝑔𝑖𝑗 | 𝑝 = 𝛿𝑖𝑗 ,

𝜕𝑘 𝑔𝑖𝑗 | 𝑝 = 0.

Locally Flat Coordinates:

𝑔𝑖𝑗 | 𝑝 = 𝛿𝑖𝑗 ,

Γ𝑘𝑖𝑗 | 𝑝 = 0.

It turns out Normal Coordinates always exists and thus so does Locally flat coordinates.

The covariant derivative is then calculated easily.

The defining properties of a Riemannanian connection tell us the following about the

connection coefficients Γ.

Christoffel symbols Γ𝑘
𝑖𝑗

are symmetric in 𝑖𝑗 . Since, ∇ is torsion free and [𝜕𝑖 , 𝜕𝑗 ] = 0

Γ𝑘𝑖𝑗 𝜕𝑘 = ∇𝜕𝑖 𝜕𝑗

= ∇𝜕𝑗 𝜕𝑖

= Γ𝑘𝑗 𝑖 .

Chirstoffel symbols completely determine the first derivatives of the metric. Met-

ric compatibility of connection gives,

𝜕𝑘 𝑔𝑖𝑗 = 𝑔

(
∇𝜕𝑘 𝜕𝑖 , 𝜕𝑗

)
+ 𝑔

(
𝜕𝑖 ,∇𝜕𝑘 𝜕𝑗

)
= Γ𝑘𝑖,𝑗 + Γ𝑘𝑗,𝑖 .

For higher tensors say, (1,k) tensor S:

𝑆 = 𝑆 𝑖𝑗1,...,𝑗𝑘
𝐸𝑖 ⊗ 𝜎 𝑗1 ⊗ · · · ⊗ 𝜎 𝑗𝑘 ,

∇𝑆 = ∇𝑆 𝑖𝑗1,...,𝑗𝑘+1
𝐸𝑖 ⊗ 𝜎 𝑗1 ⊗ · · · ⊗ 𝜎 𝑗𝑘 ⊗ 𝜎 𝑗𝑘+1 ..
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We obtain the coefficients ∇𝑗0𝑆
𝑖
𝑗1,...,𝑗𝑘

≡ (∇𝑆) 𝑖
𝑗0,...,𝑗𝑘+1

through ∇𝑗0𝑆 ≡ ∇𝐸𝑗0
𝑆 .

2.6 Curvature

We are now ready to define the curvature of a Riemannian Manifold. Curvature enters the

theory of Riemannian geometry as a local invariant which are preserved under local equiv-

alances between two structures under study, here the structures being Riemannian Mani-

folds.

The curvature of the space can be probed by parallely transporting a vector field along

suitable directions. We wish to compute the difference in the vector field at a point after this

transport. In R2 for example, take a vector field 𝑍 and transport it parallely along x-axis,

then along all the coordinate lines parallel to y-axis. We wish to know if ∇𝜕1𝑍 = 0 i.e. if 𝑍 is

parallel along the x-axis. Infact since ∇𝜕1𝑍 = 0 on x-axis, showing ∇𝜕2∇𝜕1𝑍 = 0 suffices by

uniqueness. And since 𝑍 is parallel along y-axis, showing ∇𝜕2∇𝜕1𝑍 = ∇𝜕1∇𝜕2𝑍 then suffices.

Ofcourse, this is exactly what happens in Euclidean spaces.

For any vector fields 𝑋 ,𝑌 , 𝑍:

∇𝑋∇𝑌 𝑍 = ∇𝑋
(
𝑌 (𝑍𝑘)𝜕𝑘

)
= 𝑋𝑌 (𝑍𝑘)𝜕𝑘

∇𝑋∇𝑌 𝑍 − ∇𝑌∇𝑋 𝑍 = ∇[𝑋 ,𝑌 ]𝑍.

In particular on R2 , if we take 𝑋 = 𝜕1,𝑌 = 𝜕2 - we indeed have, ∇1𝑍 = 0!

Definition 2.6.1. A Riemannian manifold is said to be flat if it is localy isometryic to a

Euclidean space, that is, if every point has a neighborhood that is isometryic to an open set in R𝑛

with its Euclidean metric.

Definition 2.6.2. A connection ∇ on a smooth manifold𝑀 is said to satisfy the flatness crite-

rion if whenever 𝑋 ,𝑌 , 𝑍 are smooth vector fields defined on an open subset of𝑀 , the following

identity holds:

∇𝑋∇𝑌 𝑍 − ∇𝑌∇𝑋 𝑍 = ∇[𝑋 ,𝑌 ]𝑍
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Since the Euclidean connection satisfies the flatness criterion and by the naturality of

connection due to local isometries, we have the following neat result.

Proposition 2.6.1. If (𝑀, 𝑔) is a flat Riemannian manifold, then its Levi-Civita connec-

tion satisfies the flatness criterion.

In what follows we develop the tools required to approach the other direction, i.e to find

sufficient conditions for a manifold to be flat.

2.6.1 Curvataure Tensor

Proposition 2.6.2. On a Riemannian manifold (𝑀, 𝑔) we define the (1,3) curvature tensor

via the map 𝑅 : 𝔛(𝑀 ) × 𝔛(𝑀 ) × 𝔛(𝑀 ) → 𝔛(𝑀 ):

𝑅(𝑋 ,𝑌 )𝑍 = ∇2
𝑋 ,𝑌 𝑍 − ∇2

𝑌 ,𝑋 𝑍

= ∇𝑋∇𝑌 𝑍 − ∇𝑌∇𝑋 𝑍 − ∇[𝑋 ,𝑌 ]𝑍.

Proof. Note that covariant derivatives are tensorial in 𝑋 ,𝑌 . Using the product rule of co-

variant derivatives it is easy to also show 𝑅(𝑋 ,𝑌 ) 𝑓 𝑍 = 𝑓 𝑅(𝑋 ,𝑌 )𝑍. □

Proposition 2.6.3. The Riemannian curvature tensor 𝑅 (𝑋 ,𝑌 , 𝑍,𝑊 ) satisfies the follow-

ing properties:

1. R is skew-symmetric in the first two and last two entries:

𝑅(𝑋 ,𝑌 , 𝑍,𝑊 ) = −𝑅(𝑌 , 𝑋 , 𝑍,𝑊 ) = 𝑅(𝑌 , 𝑋 ,𝑊 , 𝑍).

2. R is symmetric between the first two and last two entries:

𝑅(𝑋 ,𝑌 , 𝑍,𝑊 ) = 𝑅(𝑍,𝑊 , 𝑋 ,𝑌 ).

3. R satisfies a cyclic permutation property called Bianchi’s first identity:

𝑅(𝑋 ,𝑌 )𝑍 + 𝑅(𝑍, 𝑋 )𝑌 + 𝑅(𝑌 , 𝑍)𝑋 = 0.
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4. ∇𝑅 satisfies a cyclic permutation property called ianci’s second identity:

(∇𝑍𝑅)𝑋 ,𝑌𝑊 + (∇𝑋𝑅)𝑌 ,𝑍𝑊 + (∇𝑌 𝑅)𝑍,𝑋𝑊 = 0.

In local coordinates, we write:

𝑅𝑚 = 𝑅𝑙
𝑖𝑗𝑘
𝑑𝑥 𝑖 ⊗ 𝑑𝑥𝑗 ⊗ 𝑑𝑥𝑘 ⊗ 𝑑𝑥 𝑙

where 𝑅
(
𝜕𝑖 , 𝜕𝑗

)
𝜕𝑘 = 𝑅𝑙

𝑖𝑗𝑘
𝜕𝑙 . We can compute these functions using the connection

coeficients:

𝑅𝑙
𝑖𝑗𝑘

= 𝜕𝑖Γ𝑙𝑗𝑘 − 𝜕𝑗Γ
𝑙
𝑖𝑘
+ Γ𝑚

𝑗𝑘
Γ𝑙𝑖𝑚 − Γ𝑚

𝑖𝑘
Γ𝑙𝑗𝑚.

We can define the (0,4) form of the curvataure tensor often called the Riemann Curva-

ture tensor as,

𝑅 (𝑋 ,𝑌 , 𝑍,𝑊 ) = 𝑔 (𝑅(𝑋 ,𝑌 )𝑍,𝑊 )

Proposition 2.6.4. The curvature tensor is a local isometry invariant: If (𝑀, 𝑔) and (�̃�, �̃�)

are Riemannian manifolds and 𝜙 : 𝑀 → 𝑀 is a local isometry, then 𝜙∗𝑅𝑚 = 𝑅𝑚.

Proof. This again follows from the naturality of connection. □

2.6.2 Flat Manifolds and the Curvature Tensor

We will make the function of the curvature tensor as an obstruction to Euclidean space pre-

cise here.

Lemma 2.6.5. Suppose 𝑀 is a smooth manifold and ∇ is any connection on 𝑀 satisfying the

flatness citerion. Given 𝑝 ∈ 𝑀 and any vector 𝑣 ∈ 𝑇𝑝𝑀 , there exists a parallel vector field𝑉

on a neighborhood of 𝑝 such that𝑉𝑝 = 𝑣.

Proof. The idea is to consider a cubic coordinate neighborhood around a point 𝑝, and paral-

lel transport the vector field𝑉 along 𝑥1-axis, then successively along 𝑥2, . . . , 𝑥𝑛 at every point
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of the 𝑥1-axis.We want to show that ∇𝜕𝑖𝑉 = 0 for all 𝑖 = 1, . . . , 𝑛. We can do this by induc-

tion. This is just a generalization of the procedure which we used to motivate the flateness

criterion. Since it is given here that the flatness criterion is satisfied, the result follows. □

This allows us to now give a sufficient condition for a manifold to be flat.

Theorem 2.6.6. A Riemannian manifold is flat if and only if its curvature tensor vanishes

identically.

Proof. The forward direction was already established. Suppose the curvature tensor van-

ishes. Then ∇ satisfies the flatness criterion. We use the previous result to construct a parallel

orthonormal frame in a neighborhood of each point which is the important characteris-

tic of a Euclidean space. Startin from an orthonormal basis (𝑏1, . . . , 𝑏𝑛) on 𝑇𝑝𝑀 , we can

construct an parallel orthonormal frame in a neighborhood of 𝑝. Because these are paral-

lel and the connection is flat, they commute. It then follows that there exists coordinates

(𝑦1, . . . , 𝑦𝑛) such that 𝐸𝑖 = 𝜕𝑖 for 𝑖 = 1, . . . , 𝑛and 𝑔𝑖𝑗 = ±𝛿𝑖𝑗 . This defines a local isomtery

to the Euclidean space. □

In particular, the curvature tensor is related to the change in vector field due to a series

of parallel transports as follows.

Theorem 2.6.7. Let (𝑀, 𝑔) be a Riemannian manifold; let 𝐼 be an open interval containing

0; let : Γ : 𝐼 × 𝐼 → 𝑀 be a smooth one-parameter familyof curves; and let 𝑝 = Γ(0, 0), 𝑥 =

𝜕𝑠Γ(0, 0),and 𝑦 = 𝜕1Γ(0, 0). For any 𝑠1, 𝑠2, 𝑡1, 𝑡2 ∈ 𝐼 , let 𝑃 𝑠1,𝑡2𝑠1,𝑡1 : 𝑇Γ(𝑠1,𝑡1)𝑀 → 𝑇Γ(𝑠1,𝑡2)𝑀

denote parallel transport along the curve 𝑡 ↦→ Γ(𝑠1, 𝑡1) from time 𝑡1 to time 𝑡2, and let 𝑃 𝑠2,𝑡2𝑠1,𝑡1 :

𝑇Γ(𝑠1,𝑡1)𝑀 → 𝑇Γ(𝑠2,𝑡1)𝑀 denote the parallel transport along the curve 𝑠 ↦→ Γ(𝑠1, 𝑡1) from time

𝑠1 to time 𝑠2. Then for every 𝑧 ∈ 𝑇𝑝𝑀 ,

𝑅(𝑥, 𝑦)𝑧 = lim
𝛿,𝜖→0

𝑃
0,0
𝛿,0 ◦ 𝑃 𝛿,0

𝛿,𝜖
◦ 𝑃 𝛿,𝜖0,𝜖 ◦ 𝑃

0,𝜖
0,0 (𝑧) − 𝑧

𝛿 𝜖
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2.6.3 Ricci and Scalar Curvatures

As a matter of simplifying the content of the curvature tensor, we define a (0,2) tensor field

called Ricci Curvature or Ricci Tensor as the trace of 𝑅𝑚 over the first and last indices,

𝑅𝑐 (𝑌 , 𝑍) = 𝑡𝑟 (𝑋 → 𝑅(𝑋 ,𝑌 )𝑍) ; 𝑅𝑐 = 𝑅𝑖𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗 ; 𝑅𝑖𝑗 = 𝑅𝑘𝑘𝑖𝑗 = 𝑔

𝑘𝑙𝑅𝑘𝑖𝑗 𝑙 .

Note that this is a symmetric 2-tensor.

And define scalar curvature as the trace of the Ricci tensor:

𝑅 = 𝑡𝑟𝑔𝑅𝑐 = 𝑅
𝑖
𝑖 .

It is also useful to define the traceless Ricci tensor as,
◦
𝑅𝑐 = 𝑅𝑐 − 1

𝑛
𝑅𝑔.

This is infact an orthogonal decomposition.

Proposition 2.6.8 (Contracted Bianchi Identity). Let (𝑀, 𝑔) be a Riemannianmanifold.

The covariant derivatives of the Riemann, Ricci, and scalar curvatures of 𝑔 satisfy the following

identities:

𝑡𝑟𝑔 (∇𝑅𝑚) = −𝐷(𝑅𝑐)

𝑡𝑟𝑔 (∇𝑅𝑐) =
1
2𝑑𝑆..

with trace over the first and last indices. In components, this is

𝑅𝑙
𝑖𝑗𝑘𝑙; = 𝑅𝑗𝑘;𝑙 − 𝑅𝑗 𝑙;𝑘

𝑅𝑖
𝑖 𝑙; =

1
2 𝑆;𝑙 ..

Definition 2.6.3. A Riemannian metric is said to be an Einstein metric if its Ricci tensor is

a constant multiple of the metric,

𝑅𝑐 = 𝜆 𝑔, 𝜆 is constant.
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This is the Einstein equation, and the next proposition asserts that for connected man-

ifolds, the physical vacuum Einstein equation is indeed an Einstein equation in the above

sense.

Proposition 2.6.9 (Schur’s Lemma). Suppose (𝑀, 𝑔) is a connected Riemannian manin-

fold of dimension 𝑛 ≥ 3whose Ricci tensor satisfies 𝑅𝑐 = 𝑓 𝑔 for some smooth real-valued

function 𝑓 . Then 𝑓 is constant and 𝑔 is an Einstein metric.

Proof. Taking the trace of 𝑅𝑐 = 𝑓 𝑔, we see that,
◦
𝑅𝑐 = 0 =⇒ ∇

◦
𝑅𝑐 = 0. So,

𝑅𝑖𝑗 ;𝑘 −
1
𝑛 ;𝑘
𝑔𝑖𝑗 = 0

1
2 𝑆;𝑗 −

1
𝑛
𝑆;𝑗 .

For 𝑛 ≥ 3, this gives, 𝑆;𝑗 = 0 which is basically 𝜕𝑗 𝑆 . Since,𝑀 is connected, we have 𝑆 is

constant, and so is 𝑓 . □

Corollary 2.6.10. If (𝑀, 𝑔) is a connected Riemannian manifold of dimension 𝑛 ≥ 3, then

𝑔 is Einstein if and only if
◦
𝑅𝑐 = 0.

2.6.4 Conformal Geometry

We now deal with the information in Riemannian curvature that is not encoded in Ricci

curvature. As we will see, this information is central to conformal geometry. It is useful to

algebraize the situation of curvature tensor as follows.

Suppose 𝑉 is an n-dimensional real vector space. Let R(𝑉 ∗) ⊆ 𝑇 4(𝑣∗) dennote the

vector space of all covariant 4-tensors𝑇 on𝑉 that have the symmetries of the (0,4) Riemann

Curvature tensor:

1. 𝑇 (𝑥, 𝑦, 𝑧, 𝑤) = −𝑇
(
𝑦, 𝑥, 𝑧, 𝑤

)
= 𝑇

(
𝑦, 𝑥, 𝑤, 𝑧

)
.

2. 𝑇
(
𝑥, 𝑦, 𝑧, 𝑤

)
= 𝑇

(
𝑧, 𝑤, 𝑥, 𝑦

)
.
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3. 𝑇 (𝑥, 𝑦, 𝑧, 𝑤) +𝑇
(
𝑦, 𝑧, 𝑥, 𝑤

)
+𝑇

(
𝑧, 𝑥, 𝑦, 𝑤

)
= 0.

An element of R(𝑉 ∗) is called an algebraic curvature tensor on𝑉 .

Proposition 2.6.11. If the vector spaace𝑉 has dimension n, then

𝑑𝑖𝑚R(𝑉 ∗) =
𝑛2 (

𝑛2 − 1
)

12 .

Proof. Consider the linear subspace B(𝑉 ∗) of𝑇 4(𝑉 ∗) satisfying only (1) and (2). Then the

linear map

𝜙 : Σ2
(
Λ2(𝑉 )∗

)
→ B(𝑉 ∗)

𝐵 ↦→ 𝜙(𝐵) (𝑥, 𝑦, 𝑧, 𝑤) = 𝐵
(
𝑥 ∧ 𝑦, 𝑧 ∧ 𝑤

)
is an isomorphism, with an inverse given by 𝜙−1 (𝑇 )

(
𝑏𝑖 ∧ 𝑏𝑗 , 𝑏𝑘 ∧ 𝑏𝑙

)
= 𝑇

(
𝑏𝑖 , 𝑏𝑗 , 𝑏𝑘, 𝑏𝑙

)
.

So,

𝑑𝑖𝑚 (B(𝑉 ∗)) = 𝑑𝑖𝑚
(
Σ2

(
Λ2(𝑉 )∗

))
=
𝑛𝐶2 (𝑛𝐶2 + 1)

2 .

And the required R(𝑉 ∗) is basically the kernel of the map,

𝜋 : B(𝑉 ∗) → 𝑇 4(𝑣∗)

𝑇 ↦→ 𝜋 (𝑇 ) (𝑥, 𝑦, 𝑧, 𝑤) = 1
3

(
𝑇 (𝑥, 𝑦, 𝑧, 𝑤) +𝑇 (𝑦, 𝑧, 𝑥, 𝑤) +𝑇 (𝑧, 𝑥, 𝑦, 𝑤)

)
.

By the symmetries (1) and (2), 𝑎𝑙𝑡 (𝑇 ) reduces precisely to the form of the image of

𝜋. And since, 𝑇 ∈ Λ4(𝑉 ∗) satisfies (1) and (2), we have 𝜋 (𝑇 ) = 𝑎𝑙𝑡 (𝑇 ) = 𝑇 . Thus

𝜋 (B(𝑉 ∗)) = Λ4(𝑉 ∗) and

𝑑𝑖𝑚 (R(𝑉 ∗)) = 𝑑𝑖𝑚 (B(𝑉 ∗)) − 𝑑𝑖𝑚
(
Λ4(𝑉 ∗)

)
.

□

If there is a scalar product defined on𝑉 , i.e. 𝑔 ∈ Σ2(𝑉 ∗). then we would like ask if the

map 𝑡𝑟𝑔 : R(𝑉 ∗) → Σ2(𝑉 ∗) is surjective.
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Definition 2.6.4. There is natural way to construct an algebraic curvature tensr out of two

symmmetric 2-tensors. Given ℎ, 𝑘 ∈ Σ2(𝑉 ∗), define the Kulkani-Nomizu product of ℎ and 𝑘

ℎ ⃝∧ 𝑘 as:

ℎ ⃝∧ 𝑘
(
𝑥, 𝑦, 𝑧, 𝑤

)
= ℎ

(
𝑥, 𝑦

)
𝑘 (𝑧, 𝑤) +ℎ

(
𝑦, 𝑧

)
𝑘 (𝑥, 𝑤)

− ℎ (𝑥, 𝑧) 𝑘
(
𝑦, 𝑤

)
− ℎ

(
𝑦, 𝑤

)
𝑘 (𝑥, 𝑧) ..

Some properties of this product immediately follow.

Lemma 2.6.12 (Properties of the Kulkarni-Nomoizu Product). -

1. ℎ ⃝∧ 𝑘 is an algebraic tensor.

2. ℎ ⃝∧ 𝑘 = 𝑘 ⃝∧ ℎ.

3. 𝑡𝑟𝑔
(
ℎ ⃝∧ 𝑔

)
= (𝑛 − 2)ℎ + (𝑡𝑟𝑔ℎ).

4. 𝑡𝑟𝑔
(
𝑔 ⃝∧ 𝑔

)
= 2(𝑛 − 1) 𝑔.

5. ⟨𝑇 , ℎ ⃝∧ 𝑔⟩
𝑔
= 4 ⟨𝑡𝑟𝑔𝑇 , ℎ⟩ 𝑔 , where𝑇 is an algebraic curvature tensor on𝑉 .

With this, we can define the inverse map from Σ2(𝑉 ∗) to R(𝑉 ∗).

Proposition 2.6.13. Let (𝑉 , 𝑔) be an n-dimensional scalar product space with 𝑛 ≥ 3, and

define a linear map𝐺 : Σ2(𝑉 ∗) → R(𝑉 ∗) by,

𝐺 (ℎ) = 1
𝑛 − 2

(
ℎ −

𝑡𝑟𝑔ℎ

2(𝑛 − 1) 𝑔
)
⃝∧ 𝑔.

Then 𝑡𝑟𝑔 (𝐺 (𝑆)) = 𝑆 and 𝐼𝑚(𝐺) = 𝑘𝑒𝑟 (𝑡𝑟𝑔)⊥.

Proof. 𝑡𝑟𝑔 (𝐺 (𝑆)) = 𝑆 follows easily from the definition. So 𝑡𝑟𝑔 is surjective and 𝐺 is injec-

tive. And we already saw that ⟨𝑇 , 𝐺 (ℎ)⟩ = 0 for𝑇 ∈ 𝑘𝑒𝑟 (𝑡𝑟𝑔). So 𝐼𝑚(𝐺) = 𝑘𝑒𝑟 (𝑡𝑔)⊥. □

We now finally apply this to the case of Riemannian and Ricci curvature tensors.
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Definition 2.6.5 (Weyl Tensor). Suppose (𝑀, 𝑔) is a Riemannian manifold. Define the

Schouten tensor of 𝑔 , denoted by 𝑃 , to be the following symmetric 2-tensor:

𝑃 =
1

𝑛 − 2

(
𝑅𝑐 − 𝑅

2(𝑛 − 1) 𝑔
)

;

and the Weyl tensor of 𝑔 to be the following algebraic curvature tensor:

𝑊 = 𝑅𝑚 − 𝑃 ⃝∧ 𝑔

= 𝑅𝑚 − 1
𝑛 − 2𝑅𝑐 ⃝∧ 𝑔 + 𝑅

2(𝑛 − 1) (𝑛 − 2) 𝑔 ⃝∧ 𝑔.

So,𝐺 (𝑅𝑐) = 𝑃 ⃝∧ 𝑔 = 𝐺 (𝑡𝑟𝑔𝑅𝑚) The Weyl tensor captures precisely that part of Rie-

mann curvature tensor which the Ricci tensor leaves out! As we will soon see, this infact this

also captures (all) the conformal data of the manifold!

Corollary 2.6.14. For every Riemannian manifold (𝑀, 𝑔) of dimension 𝑛 ≥ 3, the trace

of the Weyl tensor is zero, and 𝑅𝑚 = 𝑊 + 𝑃 ⃝∧ 𝑔 is the orthogonal decomposition of 𝑅𝑚

corresponding to R(𝑉 ∗) = 𝑘𝑒𝑟 (𝑡𝑟𝑔) ⊕ 𝑘𝑒𝑟 (𝑡𝑟𝑔)⊥.

Corollary 2.6.15. Let𝑉 be an n-dimensional real vector space.

1. If 𝑛 = 0 or 𝑛 = 1, then R(𝑉 ∗) = {0} .

2. If 𝑛 = 2, then R(𝑉 ∗) is 1-dimensional, spanned by 𝑔 ⃝∧ 𝑔.

3. If 𝑛 = 3, then R(𝑉 ∗) is 6-dimensional and𝐺 : Σ2(𝑉 ∗) → R(𝑉 ∗) is an isomorphism.

This immediately gives the following:

• In 3 dimensions, the Weyl tensor vannishes identically and the curvature tensor is en-

tirely specified by the Ricci tensor!

• In 2 dimensions, the Riemann and Ricci tensors are completely determined by the

scalar curvature as follows:

𝑅𝑚 =
1
4𝑅𝑔 ⃝∧ 𝑔, 𝑅𝑐 =

1
2𝑅𝑔.
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Thus the content of the Riemann Curvature tensor is given by the Weyl and Ricci (Schouten)

tensors. And the flatness is given by the whole curvture tensor. We now move to the con-

formal content of the curvature tensor, that is rather than studying local invariants under

local isometries(which preserve distances and thus angles), we would like to probe the more

weaker conformal transformations which only preserves angles and study their local invari-

ants. It turns out, Weyl tensor is roughly the conformal content of the manifold.

Definition 2.6.6. Two metrics 𝑔1, 𝑔2 on a manifold 𝑀 are said to be conformally related to

each other if there is a positive function 𝑓 ∈ 𝐶∞(𝑀 ) such that 𝑔2 = 𝑓 𝑔1. Given two Rieman-

nian manifolds (𝑀, 𝑔1) and (�̃�, �̃� , a diffeomorphism 𝜙 : 𝑀 → �̃� is called a conformal

diffeomorphis (or a conformal transformation) if it pulls �̃� bask to a metric that is conformal

to 𝑔 :

𝜙∗ �̃� = 𝑓 𝑔 for some positive 𝑓 ∈ 𝐶∞(𝑀 ).

Two Riemannian manifolds are said to be conformally equivalent if there is a conformal dif-

feomorphism between them.

Indeed, conformal relation defines an equivalence relation on the collection of Rieman-

nian metric on a manifold.

Definition 2.6.7. A Riemannian manifold is said to be locally conformally flat if every point

of 𝑀 has a neighborhood that is conformally equivalent to an open set in
(
R𝑛, 𝑔R𝑛

)
with its

standard metric.

Note that 𝑆𝑛 {𝐵} is conformally equivalent to R𝑛 with stereographic projection as the

conformal diffeomorphism.

We have the following important results on the behaviour of the curvature tensor and its

orthogonal elements.
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Proposition 2.6.16 (Conformal Transformation of the Levi-Civita Connection). Let (𝑀, 𝑔)

be a Riemannian or pseudo-Riemannian 𝑛-manifold (with or without boundary), and let

�̄� = 𝑒2𝑓 𝑔 be any metric conformal to 𝑔 . If ∇ and ∇̄ denote the Levi-Civita connections of

𝑔 and �̄� , respectively, then

∇̄𝑋𝑌 = ∇𝑋𝑌 + (𝑋 𝑓 )𝑌 + (𝑌 𝑓 )𝑋 − ⟨𝑋 ,𝑌 ⟩𝑔 grad
𝑔
𝑓 .

In any local coordinates, the Christoffel symbols of the two connections are related by

Γ̄𝑘𝑖𝑗 = Γ𝑘𝑖𝑗 + 𝑓𝑖𝛿
𝑘
𝑗 + 𝑓𝑗 𝛿 𝑘𝑖 − 𝑔

𝑘𝑙 𝑓𝑘 𝑔𝑖𝑗 ,

where 𝑓𝑖 := 𝜕𝑖 𝑓 is the 𝑖th component of ∇𝑓 = 𝑑𝑓 = 𝑓𝑖𝑑𝑥 𝑖 .

Theorem 2.6.17 (Conformal Transformation of the Curvature). Let 𝑔 be a Riemannian

or pseudo-Riemannian metric on an 𝑛-manifold 𝑀 with or without boundary, 𝑓 ∈ 𝐶∞(𝑀 ),

and �̄� = 𝑒2𝑓 𝑔 . In the Riemannian case, the curvature tensors of �̄� (represented with tildes) are

related to those of 𝑔 by the following formulas:

�̃�𝑚 = 𝑒2𝑓
(
𝑅𝑚 − (∇2 𝑓 ) ⊙ 𝑔 + (𝑑𝑓 ⊗ 𝑑𝑓 ) ⊙ 𝑔 − 1

2 |𝑑𝑓 |
2
𝑔 ( 𝑔 ⊙ 𝑔)

)
,

�̃�𝑐 = 𝑅𝑐 − (𝑛 − 2) (∇2 𝑓 ) + (𝑛 − 2) (𝑑𝑓 ⊗ 𝑑𝑓 ) − (Δ𝑓 + (𝑛 − 2) |𝑑𝑓 |2𝑔) 𝑔,

𝑆 = 𝑒−2𝑓
(
𝑆 − 2(𝑛 − 1)Δ𝑓 − (𝑛 − 1) (𝑛 − 2) |𝑑𝑓 |2𝑔

)
.

where the curvatures and covariant derivatives on the right are those of 𝑔 , andΔ𝑓 = div(grad 𝑓 ).

If in addition 𝑛 ≥ 3, then

𝑃 = 𝑃 − ∇2 𝑓 + (𝑑𝑓 ⊗ 𝑑𝑓 ) − 1
2 |𝑑𝑓 |

2
𝑔 𝑔,

�̃� = 𝑒2𝑓𝑊.

In the pseudo-Riemannian case, the same formulas hold with each occurrence of |𝑑𝑓 |2𝑔 replaced

by ⟨𝑑𝑓 , 𝑑𝑓 ⟩𝑔 .
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Out of all the above formulae, the one that concerns us is the transformation �̃� =

𝑒2𝑓𝑊 . One can derive all the above formula by using local coordinates. And in case of

curvatures, we can simplify the computation by going to the locally flat frame. Here’s the

geometric coroallary of the above result.

Corollary 2.6.18. Suppose (𝑀, 𝑔) is a Riemannian Manifold of dimension 𝑛 ≥ 3. If 𝑔 is

locally conformally flat, then its Weyl tensor vanishes identically.

Proof. Since, there is a local conformal diffeomorphism toR𝑛, this induces a pull back metric

�̃� = 𝑒2𝑓 𝑔 in a neighborhod. But 𝑅𝑚 �̃� = 0 so,𝑊�̃� = 0. By the simple transformation of the

Weyl Tensor, we have𝑊𝑔 = 0 too in the neighborhood! □

We would like to now study the sufficient condition for the manifold to be conformally

flat. Recall that in dimension 3, the Weyl tensor vanishes for all manifolds. We have another

tensor which captures the conformal data in 3 dimensions.

Definition 2.6.8. On a Riemannian manifold, define the Cotton 3-tensor as the exterior

covariant derivative of the Schouten 2-tensor 𝑃 :

𝐶 (𝑋 ,𝑌 , 𝑍) = −𝐷𝑃 (𝑋 ,𝑌 , 𝑍) = −∇𝑃 (𝑋 ,𝑌 , 𝑍) + ∇𝑃 (𝑋 , 𝑍,𝑌 )

𝐶𝑖𝑗𝑘 = 𝑃𝑖𝑗 ;𝑘 − 𝑃𝑖𝑘;𝑗 .

Proposition 2.6.19. Suppose (𝑀, 𝑔) is a Riemannian manifold of dimension 𝑛 ≥ 3, and

let𝑊 and C denote the Weyl and Cotton tensors, respectively. Then

𝑡𝑟𝑔 (∇𝑊 ) = (𝑛 − 3) 𝐶,

where the trace is on the first and last indices of the 5-tensor ∇𝑊 .

Corollary 2.6.20. Suppose (𝑀, 𝑔) is a Riemannian manifold. If dim𝑀 ≥ 4 and the Weyl

tensor vanishes identically, then so does the Cotton tensor.
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Proposition 2.6.21 (Conformal Invariance of Cotton tensor in Dimension 3). Supppose

(𝑀, 𝑔) is a Riemannian 3-manifold, and �̃� = 𝑒2𝑓 𝑔 for some 𝑓 ∈ 𝐶∞(𝑀 ). Then the cotton

tensors of both the metrics are equal: 𝐶 �̃� = 𝐶𝑔 .

Proof. An long explicit coordinate calculation. □

Corollary 2.6.22. If (𝑀, 𝑔) is a locally conformally flat 3-manifold, then the Cotton tensor

of 𝑔 vanishes identically.

Now to the theorem that completes our claim that Weyl tensor (and cotton tensor) hold

all the conformal data.

Theorem 2.6.23 (Weyl-Schouten). Suppose (𝑀, 𝑔) is a Riemannian manifold of dimen-

sion 𝑛 ≥ 3.

1. If 𝑛 ≥ 4, then (𝑀, 𝑔) is locally conformally flat if and only if its Weyl tensor is identi-

cally zero.

2. If 𝑛 = 3, then (𝑀, 𝑔) is locally conformally flat if and only if its Cotton Tensor is

identically zero.

Note that for 1-dimensional Riemannian manifolds, the vector space of algebraic curva-

tures is zero-dimensional. So all Riemannian 1-manifolds have 𝑅𝑚 = 0 and are thus flat.

Lemma 2.6.24. Every Riemannian 2-manifold is locally conformally flat.

Although not given by the Weyl-Schouten theorem, there are so-called isothermal co-

ordinates on all 2-manifolds, which give local conformal equivalences; the proof of which

involves PDE theory and Complex analysis.
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Chapter 3

Geometry of AdS Spacetime
It is important to understand the symmetry structure (isometries) of the metric space to re-

late to the conserved quantities of the theory of gravity in that space, and also the causal

structure of it. After a general discussion of the isometries and Killing vector fields for gen-

eral space, with sphere and flat as examples, we define the anti-de Sitter space as the negatively

curved maximally symmetric space living inside a higher-dimensional pseudo-Euclidean space

of a hyperbolic kind. We then understand this space by giving different possible coordinates

on it. We note in particular the hyperbolic and conformally flat nature, along with the notion

of conformal boundary of AdS. One can extract some physics in this space by constructing

the Penrose diagram - as a way to identify the causal structure. The process of drawing such

diagrams is discussed along with examples of Minkowski and AdS spaces. We end by noting

that there is not a unique but a arbitrary way to approach the boundary of AdS thus defining

a conformal class of metrics on the boundary.

3.1 Isometries, Killing Vector Fields and Maximal Sym-
metry

In the general theory of relativity, there is a vast freedom in choosing the coordinates. The

coordinate transformations which preserve the form of the metric are called isometries. That

is 𝑥 → 𝑥′ is an isometry if 𝑔′𝜇𝜈 (𝑥′) = 𝑔𝜇𝜈 (𝑥′). Infinitesimally we write the transformation as

𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜉 𝜇(𝑥) with 𝜖 an infinitesimal parameter. Using the tensor transformation law

for the metric we have,
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𝑔𝜌𝜎 (𝑥′)
iso.
= 𝑔′𝜌𝜎 (𝑥′)

tens.
= 𝑔𝜇𝜈 (𝑥)

𝜕𝑥𝜇

𝜕𝑥′𝜌
𝜕𝑥𝜈

𝜕𝑥′𝜎
(3.1)

= 𝑔𝜇𝜈 (𝑥)
(
𝛿
𝜇
𝜌 − 𝜖𝜕𝜌𝜉 𝜇(𝑥)

) (
𝛿 𝜈𝜎 − 𝜖𝜕𝜎 𝜉 𝜈 (𝑥)

)
(3.2)

𝑔𝜌𝜎 (𝑥) + 𝜖𝜉 𝜆𝜕𝜆 𝑔𝜌𝜎 = 𝑔𝜌𝜎 (𝑥) − 𝜖 𝑔𝜇𝜎 𝜕𝜌𝜉 𝜇 − 𝜖 𝑔𝜌𝜈𝜕𝜎 𝜉 𝜈 (3.3)

We thus have what we call the killing equation,

𝑔𝜇𝜎 𝜕𝜌𝜉
𝜇 + 𝑔𝜌𝜈𝜕𝜎 𝜉 𝜈 + 𝜉 𝜆𝜕𝜆 𝑔𝜇𝜈 = 0 (3.4)

and in terms of the covariant derivative, this becomes,

∇𝑎𝜉𝑏 + ∇𝑏𝜉𝑎 = 0 (3.5)

The 𝜉 𝜇s satisfying the above equation are called the killing vector fields (KVFs) named

after William Killing. This condition allows us to either restrict the metrics (solutions of

Einstein Equation) using a set of KVFs or find out the KVFs for a given metric. In what fol-

lows, we will probe both possibilities by first finding linearly independent KVFs for familiar

spaces and then analysing the form of metric assuming maximal number of Killing Vectors,

which involves some non-trivial calculations.

Note that any linear combination of killing vectors is also a killing vector, and the number

of linearly independent solutions of 1.5 is independent of the coordinates, reflecting the fact

that Isometry is an intrinsic property of the space.

3.1.1 Euclidean Space

On a 3-dimensional Euclidean space, we have 𝑔 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. Thus, the killing condi-

tion reads,

𝑔𝜌𝜈𝜕𝜎 𝜉
𝜈 + 𝑔𝜇𝜎 𝜕𝜌𝜉 𝜇0 (3.6)
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Expanding this gives a set of simple first-order PDEs,

𝜕𝑥 𝜉
𝑥 = 0; 𝜕𝑥 𝜉 𝑦 + 𝜕𝑦𝜉 𝑥 = 0 (3.7)

𝜕𝑦𝜉
𝑦 = 0; 𝜕𝑦𝜉 𝑧 + 𝜕𝑧𝜉 𝑦 = 0 (3.8)

𝜕𝑧𝜉
𝑧 = 0; 𝜕𝑧𝜉 𝑥 + 𝜕𝑥 𝜉 𝑧 = 0 (3.9)

Using these, we can also conclude the following

𝜕2
𝑦 𝜉

𝑥 = 𝜕2
𝑧 𝜉

𝑥 = 0 (3.10)

𝜕2
𝑥 𝜉

𝑦 = 𝜕2
𝑧 𝜉

𝑦 = 0 (3.11)

𝜕2
𝑥 𝜉

𝑧 = 𝜕2
𝑦 𝜉

𝑧 = 0 (3.12)

(3.13)

So up to the multiplication of possible constants, the possible KVFs are

𝜉 𝑥 = 0 or 1 or ± 𝑦 or ± 𝑧 (3.14)

𝜉 𝑦 = 0 or 1 or ± 𝑥 or ± 𝑧 (3.15)

𝜉 𝑧 = 0 or 1 or ± 𝑥 or ± 𝑦 (3.16)

(3.17)

That is, (1, 0, 0), (0, 1, 0), (0, 0, 1) and (𝑦,−𝑥, 0), (𝑧, 0,−𝑥), (0, 𝑧,−𝑦) are the 6 Killing

Vector Fields for the Euclidean metric. These correspond to all the generators of translations

and rotations in the Euclidean space!
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Recall that these vector fields give us the directions in which we can traverse and still

maintain the form of the metric. We see that in 𝐸2 we could translate or rotate the points

locally and still remain with the same metric. That is, we could go anywhere on this space, and

the metric remains the same. We will have more to comment on this soon.

3.1.2 Sphere

We have the metric 𝑑𝑠2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜙2 on the sphere. The killing condition gives,

𝜕𝜃 𝜉
𝜃 = 0 (3.18)

2 sin2 𝜃 𝜕𝜙𝜉
𝜙 + 𝜉 𝜃 sin 2𝜃 = 0 (3.19)

𝜕𝜙𝜉
𝜃 + sin2 𝜃 𝜕𝜃 𝜉

𝜙 = 0 (3.20)

A general solution to this system of PDE can be evaluated to be,

𝜉 =
(
𝐴 cos 𝜙 + 𝐵 sin 𝜙,−(𝐴 sin 𝜙 − 𝐵 cos 𝜙) cot 𝜃 + 𝐶

)
(3.21)

with components being of 𝜃 and 𝜙 in order.

Importantly, this general solution can be written as a linear combination of the following

three vector fields,

𝜉(1) = (sin 𝜙, cot 𝜃 cos 𝜙) (3.22)

𝜉(2) = (cos 𝜙,− cot 𝜃 sin 𝜙) (3.23)

𝜉(3) = (0, 1) (3.24)

These correspond to two directions of translation and rotation around one axis on a

2-sphere. We thus have 3 Killing Vector Fields, which are essentially all the generators of

translations and rotations on 𝑆2.
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3.1.3 Maximal Symmetry

There are essentially three important things-

1. The maximum number of linearly independent Killing Vectors (solutions to 3.5) for

a

d-dimensional space is

𝑑 (𝑑 + 1) /2.

2. A space is called Maximally Symmetric if the number of KVFs it holds is maximum.

3. The curvature tensor is fixed by the constant scalar curvature R (or 𝐾 , 𝐾 = 𝑅
𝐷(𝐷−1) ).

4. Maximally symmetric spaces are uniquely specified by a curvature constant and by the

number of eigenvalues of the metric that are positive(or negative).

Maximum Number of KVFs:

Informally, this corresponds to the total number of translational and rotational degrees of

freedom available in the space. If the space is d-dimensional, then # translations = d, # rota-

tions = 𝑑(𝑑−1)
2 . If we assume KVFs are either translational or rotational, then the maximum

number is just the sum of translational and rotational ones!

Recall, [
∇𝜇,∇𝜈

]
𝑉𝜌 = −𝑅𝜎𝜌𝜇𝜈𝑉𝜎 (3.25)

and using the cyclic identity (Bianchi Identity) of the Curvature tensor, we have

[
∇𝜇,∇𝜈

]
𝑉𝜌 +

[
∇𝜈 ,∇𝜌

]
𝑉𝜇 +

[
∇𝜌,∇𝜇

]
𝑉𝜈 = 0 (3.26)

Applying these on 𝜉 gives,

∇𝜌∇𝜇𝜉𝜈 = 𝑅𝜏𝜌𝜇𝜈𝜉𝜏 (3.27)
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We thus have the following system of PDE,

∇𝜌𝜉𝜇 = 𝜒𝜌𝜇 (3.28)

∇𝜌 𝜒𝜇𝜈 = 𝑅𝜏𝜌𝜇𝜈𝜉𝜏 (3.29)

where we have from 3.5, 𝜒𝜌𝜇 = −𝜒𝜇𝜌

This system takes 𝑑(𝑑+1)
2 initial conditions, thus giving the same maximum number of

independent solutions! We thus can have only 𝑑(𝑑+1)
2 number of KVFs for any given d-

dimensional space.

Curvature Tensor in a Maximally Symmetric Space:

Consider generalization of 3.25 to 2-rank tensors,

𝑇𝜇𝜌;𝜈𝜔 −𝑇𝜇𝜌;𝜔;𝜈 = −𝑅𝜏𝜇𝜈𝜔𝑇𝜏 𝜌 − 𝑅𝜏𝜌𝜈𝜔𝑇𝜇𝜏 (3.30)

Where we have used the following notation for taking covariant derivatives,

∇𝜆1∇𝜆2 . . .∇𝜆𝑛 𝜒𝜇𝜈 = 𝜒𝜇𝜈;𝜆1;...𝜆𝑛 (3.31)

Let𝑇𝜇𝜌 = ∇𝜇𝜉𝜌 ≡ 𝜉𝜌;𝜇 using equation 3.29 we have 𝜉𝜌;𝜈;𝜔;𝜇 = 𝑅
𝜏
𝜔𝜇𝜌;𝜈𝜉𝜏 +𝑅𝜏𝜔𝜇𝜌𝜉𝜏 ;𝜈 and thus,

𝜉𝜌;𝜈;𝜔;𝜇 − 𝜉𝜌;𝜔;𝜈;𝜇 = −𝑅𝜏𝜇𝜈𝜔𝜉𝜌;𝜏 − 𝑅𝜏𝜌𝜈𝜔𝜉𝜏 ;𝜇 (3.32)(
𝑅𝜏𝜔𝜇𝜌;𝜈 − 𝑅𝜏𝜈𝜇𝜌;𝜔

)
𝜉𝜏 =

(
𝑅𝜏𝜈𝜇𝜌𝛿

𝜅
𝜔 − 𝑅𝜏𝜔𝜇𝜌𝛿𝜅𝜈 + 𝑅𝜏𝜇𝜈𝜔𝛿𝜅𝜌 − 𝑅𝜏𝜌𝜈𝜔𝛿𝜅𝜇

)
𝜉𝜏 ;𝜅 (3.33)

For translations, R.H.S of equation 3.33 vanishes, and we have (solving for linearly inde-

pendent KVFs)

𝑅𝜏𝜔𝜇𝜌;𝜈 = 𝑅
𝜏
𝜈𝜇𝜌;𝜔 (3.34)

For rotation, L.H.S vanishes, implying that (solving for linearly independent KVFs again)

the coefficient is a symmetric tensor. Then contracting 𝜅 with 𝜌 and lowering 𝜏 gives,
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𝑅𝜏𝜈𝜇𝜌𝛿
𝜅
𝜔 − 𝑅𝜏𝜔𝜇𝜌𝛿𝜅𝜈 + 𝑅𝜏𝜇𝜈𝜔𝛿𝜅𝜌 − 𝑅𝜏𝜌𝜈𝜔𝛿𝜅𝜇 = 𝑅𝜅𝜈𝜇𝜌𝛿

𝜏
𝜔 − 𝑅𝜅𝜔𝜇𝜌𝛿 𝜏𝜈 + 𝑅𝜅𝜇𝜈𝜔𝛿 𝜏𝜌 − 𝑅𝜅𝜌𝜈𝜔𝛿 𝜏𝜇

(3.35)

𝑅𝜏 𝜇𝜈𝜔 (𝐷 − 1) −
(
𝑅𝜏 𝜈𝜔𝜇 − 𝑅𝜏𝜔𝜇𝜈 − 𝑅𝜏 𝜇𝜈𝜔

)
= 𝑅𝜔𝜇 𝑔𝜏 𝜈 − 𝑅𝜈𝜇 𝑔𝜏𝜔 (3.36)

𝑅𝜏 𝜇𝜈𝜔 =
𝑅

𝐷 (𝐷 − 1)

(
𝑔𝜔𝜇 𝑔𝜏 𝜈 − 𝑔𝜈𝜇 𝑔𝜏𝜔

)
. (3.37)

Where we have used the cyclic property of curvature tensor and 𝑅𝑐
𝑏𝑐𝑎

= 𝑅𝑐
𝑎𝑐𝑏

= −𝑅𝑐
𝑎𝑏𝑐

=

𝑅𝑎𝑏, 𝑅
𝑐
𝑐𝑎𝑏

= 0.

Now, use the (contracted) Bianchi identity ∇𝜇𝐺𝜇𝜈 = 0,

∇𝜇
(
𝑅𝜇𝜈 − 1

2𝑅𝑔
𝜇𝜈

)
=

(
1
𝐷

− 1
2

)
∇𝜇

(
𝑅𝑔 𝜇𝜈

)
= 0 (3.38)

=⇒
(

1
𝐷

− 1
2

)
𝜕𝜇𝑅 = 0 (3.39)

Since, ∇𝛼 𝑔 𝛽𝛾 = 0.

Thus for 𝐷 > 2, we have a constant scalar curvature R. And for 𝐷 = 2, use equa-

tion 3.34:

(
𝑔𝜔𝜇𝛿

𝜏
𝜌 − 𝑔𝜔𝜌𝛿 𝜏𝜇

)
𝜕𝑣𝑅 =

(
𝑔𝜈𝜇𝛿

𝜏
𝜌 − 𝑔𝜈 𝜌𝛿 𝜏𝜇

)
𝜕𝜔𝑅 (3.40)

Contract 𝜏 with 𝜌 and 𝜇, 𝜈 with 𝑔 𝜇𝜈 ,

(
2𝑔𝜔𝜇 − 𝑔𝜔𝜇

)
𝜕𝑣𝑅 =

(
2𝑔𝜈𝜇 − 𝑔𝜈𝜇

)
𝜕𝜔𝑅 (3.41)

𝛿 𝜈𝜔𝜕𝑣𝑅 = 𝑔𝜇𝜈 𝑔
𝜇𝜈𝜕𝜔𝑅 (3.42)

=⇒ 𝜕𝜔𝑅 = 0 (3.43)

We thus have a constant curvature for a maximal symmetric space, and the curvature

tensor is fixed by it as,
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𝑅𝜏 𝜇𝜈𝜔 =
𝑅

𝐷 (𝐷 − 1)

(
𝑔𝜔𝜇 𝑔𝜏 𝜈 − 𝑔𝜈𝜇 𝑔𝜏𝜔

)
(3.44)

3.2 AdS as a maximally symmetric solution to Einstein
Equation

We start with the Einstein-Hilbert Action,

𝑆 = −𝑠 1
16𝜋𝐺𝐷

∫
𝑑𝐷

√︃
| 𝑔 | (𝑅 − Λ) (3.45)

giving the following vacuum Einstein equation with Cosmological Constant,

𝑅𝜇𝜈 −
1
2 𝑔𝜇𝜈𝑅 + 1

2Λ𝑔𝜇𝜈 = 0. (3.46)

Contracting with 𝑔 𝜇𝜈 we see that,

𝑅 =
𝐷

𝐷 − 2Λ, 𝑅𝜇𝜈 =
Λ

𝐷 − 2 𝑔𝜇𝜈 (3.47)

Such space with 𝑅𝜇𝜈 ∝ 𝑔𝜇𝜈 are called Einstein spaces. The Einstein equation’s only

condition on vacuum spaces is given by equations 3.47. That is a constant scalar curvature

and 𝑅𝜇𝜈∝𝑔𝜇𝜈 . We look for maximal symmetric solutions. As we will see, these spaces satisfy

the above conditions without any further input with the Riemann tensor given by:

𝑅𝜇𝜈 𝜌𝜎 = 𝐾

(
𝑔𝜈𝜎 𝑔𝜇𝜌 − 𝑔𝜈 𝜌 − 𝑔𝜇𝜎

)
. (3.48)

Anti-de Sitter space is the maximally symmetric solution to the Einstein Equations with

a constant negative curvature and a negative cosmological constant. Similarly, we have de

Sitter space with constant positive curvature and a positive cosmological constant.
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3.2.1 AdS as an Embedding

We define the d-dimensional anti de Sitter space 𝐴𝑑𝑆𝑑 with length scale 𝐿 as the submanfiold

of a (𝑑 + 1)-dimensional Minkowski-type manifold 𝑀 𝑑−1,2 as follows:

1. Let
(
𝑋 0, 𝑋 1, . . . , 𝑋 𝑑

)
be the coordinates on 𝑀 𝑑−1,2.

2. So 𝑀 𝑑−1,2 is a spacetime with 𝑑𝑠2 = −
(
𝑑𝑋 0)2 +

(
𝑑𝑋 1)2 + . . . +

(
𝑑𝑋 𝑑−1

)2
−

(
𝑑𝑋 𝑑

)2
.

3. We define 𝐴𝑑𝑆𝑑 as the set of all points
(
𝑋 0, 𝑋 1, . . . , 𝑋 𝑑

)
satisfying

−
(
𝑋 0

)2
+ (𝑋 1)2 + . . . + (𝑋 𝑑−1)2 − (𝑋 𝑑)2 = −𝐿2 (3.49)

or,

(𝑋 0)2 −
𝑑−1∑︁
𝑖=1

(𝑋 𝑖)2 + (𝑋 𝑑)2 = 𝐿2. (3.50)

This embedding is carried out similarly to the sphere and de Sitter spaces. We see that,

the isometry group of 𝐴𝑑𝑆𝑑 is 𝑆𝑂 (𝑑 − 1, 2) (with (𝑑 + 1) (𝑑 + 2)/2 number of generators)

is thus a (𝑑 + 1) - dimensional maximally symmetric space!

Embedding Space Metric Submanifold Definition
of Submanifold

Isometry Group
of the Submanifold

𝐸𝑑+1 𝑑𝑠2 =
(
𝑑𝑋 0)2 +

(
𝑑𝑋 1)2 + . . . +

(
𝑑𝑋 𝑑−1

)2
+

(
𝑑𝑋 𝑑

)2
𝑆𝑑

∑𝑑
𝑖=0(𝑋

𝑖)2 = 𝐿2 𝑆𝑂 (𝑑 + 1)

𝑀 𝑑,1 𝑑𝑠2 = −
(
𝑑𝑋 0)2 +

(
𝑑𝑋 1)2 + . . . +

(
𝑑𝑋 𝑑−1

)2
+

(
𝑑𝑋 𝑑

)2
𝑑𝑆𝑑 −(𝑋 0)2 + ∑𝑑

𝑖=1(𝑋
𝑖)2 = 𝐿2 𝑆𝑂 (𝑑, 1)

𝑀 𝑑−1,2 𝑑𝑠2 = −
(
𝑑𝑋 0)2 +

(
𝑑𝑋 1)2 + . . . +

(
𝑑𝑋 𝑑−1

)2
−

(
𝑑𝑋 𝑑

)2
𝐴𝑑𝑆𝑑 (𝑋 0)2 − ∑𝑑−1

𝑖=1 (𝑋
𝑖)2 + (𝑋 𝑑)2 = 𝐿2 𝑆𝑂 (𝑑 − 1, 2)

Table 3.1: Sphere, de Sitter, and Anti-de Sitter Spaces.

3.2.2 Riemann Curvature Tensor

a) A Nifty Way: Locally Flat Metric:

Let 𝑋 𝑑 =𝑊 and 𝑋 .𝑋 = 𝜂𝜇𝜈𝑋
𝜇𝑋 𝜈 ; 𝜇, 𝜈 = 0, 1, . . . , 𝑑−1 with 𝑠𝑖 𝑔𝑛

(
𝜂𝜇𝜈

)
= (−1, 1, . . . , 1).

We can eliminate the W coordinate to get the coordinates on 𝐴𝑑𝑆𝑑.
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The defnition of 𝐴𝑑𝑆𝑑 now reads 𝑋 .𝑋 −𝑊 2 = −𝐿2.

So,

𝑊 2 = 𝐿2 + 𝑋 .𝑋 (3.51)

𝑑𝑊 2 =
𝑋 .𝑑𝑋

𝐿2 + 𝑋 .𝑋
(3.52)

Thus,

𝑑𝑠2 = 𝜂𝜇𝜈𝑑𝑋
𝜇𝑑𝑋 𝜈 − 𝑑𝑊 2 (3.53)

𝑑𝑠2 =

(
𝜂𝜇𝜈 −

(
𝜂𝜇𝜆𝜂𝜈 𝜌𝑋

𝜆𝑋 𝜌

𝐿2 + 𝑋 .𝑋

))
𝑑𝑋 𝜇𝑑𝑋 𝜈 (3.54)

Thus, for 𝑋 → 0, we have locally flat metric (at 𝑋 𝜇 = 0, where the Christophel symbols

i.e the first order derivatives of 𝑔 vanish) -

𝑔𝜇𝜈 ≈ 𝜂𝜇𝜈 −
1
𝐿2 𝜂𝜇𝜆𝜂𝜈 𝜌𝑋

𝜆𝑋 𝜌 (3.55)

Thus it is now a lot easier to compute the curvature tensor:

For locally flat coordinates, 𝑔𝜏 𝜇(𝑥) = 𝜂𝜏 𝜇 + 𝐵𝜏 𝜇,𝜆𝜎 𝑥𝜆𝑥 𝜎 + · · · we have -

𝑅𝜏 𝜌𝜇𝜈 =

(
𝐵𝜏 𝜈,𝜌𝜇 + 𝐵 𝜌𝜇,𝜏 𝜈

)
−

(
𝐵 𝜌𝜈,𝜏 𝜇 + 𝐵𝜏 𝜇,𝜌𝜈

)
(3.56)

Using the form 3.55 we have

𝑅𝜏 𝜌𝜇𝜈 = − 1
𝐿2

(
𝜂𝜏 𝜇𝜂𝜌𝜈 − 𝜂𝜏 𝜈𝜂𝜌𝜇

)
(3.57)

Comparing this with the maximal symmetry condition 3.48 at 𝑋 𝜇 = 0 to get 𝐾 = − 1
𝐿2

and thus for d-dimensional anti-de Sitter space, we have at any arbitrary point,
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𝑅𝜏 𝜌𝜇𝜈 = − 1
𝐿2

(
𝑔𝜏 𝜇 𝑔𝜌𝜈 − 𝑔𝜏 𝜈 𝑔𝜌𝜇

)
(3.58)

And

𝑅 = −𝑑(𝑑 − 1)
𝐿2 , 𝑅𝜇𝜈 = − (𝑑 − 1)

𝐿2 𝑔𝜇𝜈 ,Λ = − (𝐷 − 2) (𝐷 − 1)
𝐿2 . (3.59)

b) Stereographic Coordinates: Conformally Flat Metric

We map
(
𝑋 0, 𝑋 1, . . . , 𝑋 𝑑

)
- coordinates on𝑀 𝑑−1,2 satisfying equation 3.50 to

(
𝑥0, . . . , 𝑥𝑑 − 1

)
as follows:

𝑋 𝜇 =
𝑥𝜇

1 − 𝑥2

4𝜌2

, 𝜇 = 0, 1, . . . , (𝑑 − 1) (3.60)

𝑋 𝑑 = 𝜌
1 + 𝑥2

4𝜌2

1 − 𝑥2

4𝜌2

(3.61)

where, 𝑥2 = −(𝑥0)2 + (𝑥1)2 + . . . + (𝑥𝑑−1)2

Now, we write the metric on the embedding space in terms of these stereographic coor-

dinates,

𝑑𝑠2 = −(𝑑𝑋 0)2 +
𝑑−1∑︁
𝑖=1

(𝑑𝑋 𝑖)2 − (𝑑𝑋 𝑑)2 (3.62)

𝑑𝑋 𝑑 = 𝑑𝜌
1 + 𝑥2

1 − 𝑥2 + 4𝜌
𝑥𝜇𝑑𝑥

𝜇(
1 − 𝑥2)2 (3.63)

𝑑𝑋 𝜇 = 𝑑𝜌
2𝑥𝜇

1 − 𝑥2 +
2𝜌(

1 − 𝑥2)2

[(
1 − 𝑥2

)
𝛿
𝜇
𝜈 + 2𝑥𝜇𝑥𝜈

]
𝑑𝑥𝜈 (3.64)

Then

𝑑𝑠2 = 𝑑𝜌2 −
4𝜌2

(1 − 𝑥2)2 𝑑𝑥
2 (3.65)

54



3 Geometry of AdS Spacetime

with 𝑑𝑥2 = −(𝑑𝑥0)2 + (𝑑𝑥1)2 + . . . +
(
𝑑𝑥𝑑−1

)2

We thus see that AdS (of length scale L) spacetime is conformally flat!

𝑔𝜇𝜈 =

(
1

1 − 𝑥2

4𝐿2

)2

𝜂𝜇𝜈 . (3.66)

Now for a general conformally flat metric 𝑔𝜇𝜈 = 𝑒𝜙(𝑥)𝜂𝜇𝜈 , we have the following result:

𝑅
𝜇
𝜈 𝜌𝜎 = − 4(

1 − 𝑥2)2

(
𝜂𝜈𝜎 𝛿

𝜇
𝜌 − 𝜂𝜈 𝜌𝛿

𝜇
𝜎

)
(3.67)

= − 1
𝐿2

(
−𝑔𝜈 𝜌𝛿

𝜇
𝜎 + 𝑔𝜈𝜎 𝛿

𝜇
𝜌

)
(3.68)

3.3 Coordinates on AdS Spacetime and the Boundary

3.3.1 Angular Coordinates, Hyperbolic Space

The definition of 𝐴𝑑𝑆3 is (𝑇 2+𝑊 2)− (𝑋 2+𝑌 2) = 𝐿2) if (𝑇 , 𝑋 ,𝑌 ,𝑊 ) are the coordinates

of the embedding space.

Set

𝑇 = 𝑅 cos 𝑡,𝑊 = 𝑅 sin 𝑡 (3.69)

𝑋 = 𝑟 cos 𝜃,𝑌 = 𝑟 sin 𝜃 (3.70)

Then

𝑑𝑠2 = −
(
𝑑𝑅2 + 𝑅2𝑑𝑡

)
+

(
𝑑𝑟2 + 𝑟2𝑑𝜃2

)
(3.71)

We have,

𝑅2 − 𝑟2 = 1

𝑅𝑑𝑅 = 𝑟𝑑𝑟

𝑑𝑅2 − 𝑑𝑟2 = − 1
1 + 𝑟2 𝑑𝑟

2
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𝑑𝑠2 = −
(
1 + 𝑟2

)
𝑑𝑡2 + 𝑑𝑟2

1 + 𝑟2 + 𝑟2𝑑𝜃2 (3.72)

This is independent of the time coordinate 𝑡 viz. we have defined coordinates (𝑡, 𝑟, 𝜃)

on 𝐴𝑑𝑆3 where the metric is static.

𝑇 =
√︁

1 + 𝑟2 cos 𝑡

𝑊 =
√︁

1 + 𝑟2 sin 𝑡

𝑋 = 𝑟 cos 𝜃

𝑌 = 𝑟 sin 𝜃 (3.73)

Similarly, we have the following metric on 𝐴𝑑𝑆𝑑 -

𝑑𝑠2 = −
(
1 + 𝑟2

)
𝑑𝑡2 + 𝑑𝑟2

1 + 𝑟2 + 𝑟2𝑑Ω2
𝑑−2. (3.74)

Now, letting 𝑟 = sinh 𝜌 -

𝑑𝑠2 = − cosh2
𝜌𝑑𝑡2 + 𝑑𝜌2 + sinh2

𝜌𝑑Ω2
𝑑−2 (3.75)

= − cosh2
𝜌𝑑𝑡2 + 𝑑𝐻 2

𝑑−1 (3.76)

This indicates that 𝐴𝑑𝑆𝑑 has a hyperbolic spatial part!

𝑇 = cosh 𝜌 cos 𝑡

𝑊 = cosh 𝜌 sin 𝑡

𝑋 = sinh 𝜌 cos 𝜃

𝑌 = sinh 𝜌 sin 𝜃 (3.77)
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3.3.2 Poincare Coordinates

Poincaré Half-Plane.

Consider the Upper Half plane of R2 equipped with following metric -

𝑑𝑠2 =

(
𝑑𝑥2 + 𝑑𝑦2)

𝑦2 (3.78)

There are two interesting features -

1. Consider 1d object along x axis situated at y - with length 𝑙 = 𝛿 𝑥
𝑦

. Now as we decrease

𝑦, i.e. move towards 𝑦 = 0, we see that the object shrinks (in x) [with constant l].

2. The edge/boundary y = 0 is infinitely far away from any (𝑥, 𝑦)!∫
𝑑𝑠 =

∫ 𝑦

0+

𝑑𝑦

𝑦
= log

( 𝑦
0+

)
→ ∞ (3.79)

This metric is again conformally flat and has hyperbolic geometry.

The concept of Poincaré Half Plane is useful in AdS, too, due to the following choice of

coordinates:

Rewrite the definition of 𝐴𝑑𝑆3: (𝑇 2 − 𝑋 2) +
(
𝑊 2 −𝑌 2) = 𝐿2

Now write

𝑇 2 − 𝑋 2 = 𝐿2 𝑡
2 − 𝑥2

𝑤2

𝑊 2 −𝑌 2 = 𝐿2(1 + 𝑥
2 − 𝑡2)
𝑤2 )

𝑇 = 𝐿
𝑡

𝑤
, 𝑋 = 𝐿

𝑥

𝑤

𝑌 =
𝐿

2𝑤

(
𝑥2 − 𝑡2 + 𝑤2 − 1

)
𝑊 =

𝐿

2𝑤

(
𝑥2 − 𝑡2 + 𝑤2 + 1

)
(3.80)

This gives us the metric -

𝑑𝑠2 =
𝐿2

𝑤2

(
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑤2

)
(3.81)
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Figure 3.1: A constant 𝑤 slice of 𝐴𝑑𝑆𝑑.

𝐴𝑑𝑆3 Minkowski version of Poincaré Half Plane equation 3.78! We thus have a spatial

boundary at 𝑤 = 0!

We can easily extend this to d-dimensions. . .

Light Cone Coordinates:

𝑊 + =𝑊 +𝑌 =
𝑤

(
𝑥2 − 𝑡2

)
+ 𝑤 (3.82)

𝑊 − =𝑊 −𝑌 =
1
𝑤

(3.83)

which satisfies𝑇 2 − 𝑋 2 +𝑊 +𝑊 − = 𝐿2

Consider the Poincaré coordinates on 𝐴𝑑𝑆5:

𝑑𝑠2 =
𝐿2

𝑤2

(
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 𝑑𝑤2

)
≡ 𝐿2

𝑧2

(
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑧2

)
(3.84)

Where in writing the second notation, we have let 𝑧 denote the coordinate perpendicu-

lar to the boundary (𝑧 = 0). So slices of constant 𝑤 are just the familiar four-dimensional

Minkowski spacetimes 𝑀 3,1!

• Set 𝑤 = 𝐿2/𝑟 to get

𝑑𝑠2 =

(
−𝑟2𝑑𝑡2 + 1

𝑟2 𝑑𝑟
2
)
+ 𝑟2𝑑𝑥2. (3.85)
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Here we have the boundary at 𝑟 → ∞

• Set 𝑤 = 𝐿𝑒𝑢/𝐿 in equation 3.84 to get

𝑑𝑠2 = 𝑒−
2𝑢
𝐿

(
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

)
+ 𝑑𝑢2 (3.86)

with 𝑢 ∈ (−∞,∞).

We thus have Poincaré coordinates on 𝐴𝑑𝑆𝑑 as:

𝑋 𝜇 = 𝑒−
𝑢
𝐿 𝑥𝜇 (3.87)

𝑋 + = 𝑋 𝑑 + 𝑋 𝑑−1 =
𝑒−

𝑢
𝐿

𝐿
𝜂𝜌𝜎 𝑥

𝜌𝑥 𝜎 + 𝐿𝑒𝑢 (3.88)

𝑋 − = 𝑋 𝑑 − 𝑋 𝑑−1 = 𝐿𝑒−
𝑢
𝐿 (3.89)

𝑑𝑠2 = 𝜂𝜇𝜈𝑋
𝜇𝑋 𝜈 − 𝑑𝑋 +𝑑𝑋 − (3.90)

giving the following metric -

𝑑𝑠2 = 𝑒−
2𝑢
𝐿 𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 + 𝑑𝑢2. (3.91)

The splitting 𝑋 𝜇 and
(
𝑋 𝑑, 𝑋 𝑑−1

)
reflects the splitting of the isometry group 𝑆𝑂 (𝑑 − 1, 2)

into its two subgroups - 𝑆𝑂 (𝑑 − 2, 1) and 𝑆𝑂 (1, 1).

3.3.3 The boundary of AdS

Write 𝑟 = 𝑡𝑎𝑛𝜓 in equation 3.74:

𝑑𝑠2 =
1

cos2 𝜓

(
−𝑑𝑡2 + 𝑑𝜓 2 + sin2 𝜓 𝑑Ω2

𝑑−2

)
(3.92)

Note that here 𝜓 ∈
[
0, 𝜋2

)
only (i.e. not upto 𝜋 ) and we thus have the spatial part not

𝑑Ω2
𝑑−1 globally but only locally, i.e. the northern hemisphere. Thus spatial part is just 𝐵𝑑−1
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topologically and is thus bounded by 𝑆𝑑−2! This is just 𝐸𝑑−2 with infinity identified as a

single point. Adding back the time coordinate, we see that 𝐴𝑑𝑆𝑑 is bounded by 𝑀 𝑑−2,1.

In 3 dimensions, this is like a ‘tin can’ - a spatial part bounded by a circle and then time

coordinate extending it to infinity.

Negatively curved spaces (or Hyperbolic spaces) do not have boundaries in general since

they stretch to infinity. However, there is a notion of the conformal boundary for such

spaces. We can illustrate this via 𝐴𝑑𝑆3. The global metric reads,

𝑑𝑠2 =
𝐿2

cos2 𝜌
(−𝑑𝑡2 + 𝑑𝜌2 + sin2 𝜌𝑑𝜃2) (3.93)

Upon a conformal rescaling of this metric with cos2 𝜌/𝐿2, we see that the spatial part

corresponds to a half sphere having a boundary 𝑆1 corresponding to 𝜌→ 𝜋/2. We conclude

that asymptotically, the boundary(via conformal scaling) of 𝐴𝑑𝑆3 is justR×𝑆1 - the cylinder.

Figure 3.2: Geometry of 𝐴𝑑𝑆3. The spatial part of the AdS bulk is hyperbolic in nature and
is conformally a (half) sphere.

Given that we have a boundary based on conformal scaling, to connect to a theory in AdS

bulk from the boundary, we need a conformally invariant theory on the boundary, which

amounts to studying the Conformal Field Theories. In particular 2D CFTs on a cylinder

play a significant role.

3.3.4 Hyperbolic Coordinates

On 𝐴𝑑𝑆3:
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Figure 3.3: The geometry of 𝐴𝑑𝑆3 with hyperbolic spatial section and R × 𝑆1 conformal
boundary. The interior of this cylinder is conformally related to the bulk of 𝐴𝑑𝑆3.

(𝑇 2 − 𝑋 2) +
(
𝑊 2 −𝑌 2

)
= 1

Set,

𝑇 = 𝑅 cosh 𝑡

𝑋 = 𝑅 sinh 𝑡

𝑊 = 𝑟 cosh𝜓

𝑌 = 𝑟 sinh𝜓 (3.94)

and the metric becomes,

𝑑𝑠2 = −
(
𝑟2 − 1

)
𝑑𝑡2 + 𝑟2

𝑟2 − 1
+ 𝑟2𝑑𝜓 2 (3.95)

For 𝐴𝑑𝑆𝑑, this becomes -

𝑑𝑠2 = −
(
𝑟2 − 1

)
𝑑𝑡2 + 𝑑𝑟2

𝑟2 − 1
+ 𝑟2𝑑𝐻 2

𝑑−2. (3.96)
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Note:

𝑑𝐻 2
𝑑
= 𝑑𝜌2 + sinh2

𝜌𝑑Ω2
𝑑−1 (3.97)

𝑑Ω2
𝑑
= 𝑑𝜓 2 + sin2 𝜓 𝑑Ω2

𝑑−1 (3.98)

• For 𝑆3 ⊂ 𝐸4,

𝑑𝑠2 =
𝑑𝑟2

1 − 𝑟2 + 𝑟2
(
𝑑𝜃2 + sin2 𝜃𝑑𝜑2

)
(3.99)

• For 𝑆2 ⊂ 𝐸3,

𝑑𝑠2 =
𝑑𝑟2

1 − 𝑟2 + 𝑟2𝑑𝜑2 (3.100)

3.3.5 Euclidean Anti-de Sitter Space

Use the stereographic coordinates. Proceed by,

𝑋 0 = 𝑖𝑥𝑇 (3.101)

𝑥0 = 𝑖𝑥𝑇 (3.102)

Then,

𝑋𝑀 =
1

1 − 𝑥2

4𝐿2

𝑥𝜇, 𝑀 = 𝑇 , 1, 2, . . . , 𝑑 − 1 (3.103)

𝑋 𝑑 =

𝐿

(
1 + 𝑥2

4𝐿2

)
1 − 𝑥2

4𝐿2

(3.104)

Here 𝑥 = (𝑥𝑇 )2 + (𝑥1)2 + . . . + (𝑥𝑑−1)2.

So that the Euclidean AdS condition is satisfied:(
𝑋𝑇

)2
+
𝑑−1∑︁
𝑖=1

(
𝑋 𝑖

)2
− (𝑋 𝑑)2 = −𝐿2 (3.105)
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Thus giving,

𝑑𝑠2 =

(
1

1 − 𝑥2

4𝐿2

) (
(𝑑𝑥𝑇 )2 + (𝑑𝑥1)2 + . . . +

(
𝑑𝑥𝑑−1

)2
)
. (3.106)

• 𝐴𝑑𝑆𝑑
𝐸

is conformally related to 𝐸𝑑.

• 𝐴𝑑𝑆𝑑
𝐸

is toplogically the Euclidean ball 𝑥2 ≤ 4𝐿2, having a boundary 𝑆𝑑−1 (which is

basically 𝐸𝑑−1 by identifying infinity with a single point).

3.3.6 Maldacena’s:

In equation 3.50, set 𝑢 = 𝑋 0 + 𝑖𝑋 𝑑, 𝑣 = 𝑋 0 − 𝑖𝑋 𝑑 so that,

𝑋 2 = 𝑋 +𝑋 − − �̄� 2 = 𝐿2 (3.107)

Now, define the following

𝜉 𝛼 ≡ 𝑋 𝛼

𝑢
; 𝛼 = 1, . . . , 𝑑 − 1 (3.108)

𝜉 2 ≡
𝑑−1∑︁
𝛼=1

(
𝜉 𝛼

)2 (3.109)

Then using equation 3.107 eliminate 𝑣:

𝑣 = 𝜉 2𝑢 + 𝐿
2

𝑢
(3.110)

Introduce the cooridnate
(
𝑢, 𝜉 𝛼

)
on 𝐴𝑑𝑆𝑑:

𝑑𝑠2 = −𝐿2 𝑑𝑢
2

𝑢2 + 𝑢2𝑑𝜉 2 (3.111)
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3.3.7 Witten’s

In equation 3.111 set 𝐿 = 1 for simplicity and introduce the cooridnates

(
𝜉 0, 𝜉

)
≡

(
𝑢−1, 𝜉

)
(3.112)

Then,

𝑑𝑠2 =
1

(𝜉 0)2

((
𝑑𝜉 0

)2
+ 𝑑𝜉 2

)
(3.113)

This looks similar to that derived in Poincaré coordinates, but note that 𝜉 0 is a light cone

coordinate, has both time and space mixed. . .

3.4 Penrose Diagrams

Penrsoe Diagrams offer a neat way to represent any spacetime into a finite region of space

holding the some information of its causal structures as well. One can follow the following

recipe to construct the Penrose Diagram which is also usually called Causal Diagram or a

Conformal Diagram for reasons that will be clear from below:

1. Starting from any form of the metric of the given space-time, identify two non-compact

coordinates.

2. Re-write the metric by using the null-coordinates over the previous two non-compact

coordinates. The resultant will still be non-compact.

3. Compactify the two null-coorduinates (say using tan−1).

4. Re-define and go back to the temporal and space coordinates, which are now compact.

Express the metric in these coordinates.
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5. Remove the conformal factor and (symmetric) contribution from any other coordi-

nates in the metric.

6. We end up with an unphysical Weyl transformed metric, whose two temporal and

spatial coordinates are compactified, and the null geodesics (thus the causal structure)

of the original spacetime are preserved.

Consider for example, the Minkowski Spacetime,

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜔2 (3.114)

with 𝑡 ∈ (−∞,∞) and 𝑟 ∈ [0,∞).

1. We re-write this in the null coordinates as 𝑢 = 𝑡 + 𝑟, 𝑣 = 𝑡 − 𝑟 (also called the light-cone

coordinates) with 𝑢, 𝑣 ∈ (−∞,∞)-

𝑑𝑠2 = −𝑑𝑢𝑑𝑣 + · · · (3.115)

2. To compactify 𝑢, 𝑣 we define,

𝑝 = tan−1 (𝑢)

𝑞 = tan−1 (𝑣) . (3.116)

So, 𝑝, 𝑞 ∈
(
− 𝜋2 ,

𝜋
2
)
. And the metric now reads,

𝑑𝑠2 = − 1
cos𝑝 cos𝑞 𝑑𝑝𝑑𝑞 + · · · (3.117)

3. We bring back the temporal coordinate via

𝑇 = 𝑝 + 𝑞

𝑋 = 𝑝 − 𝑞. (3.118)
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These coordinates are compactified,

−𝜋 ≤ 𝑇 + 𝑋 ≤ 𝜋

−𝜋 ≤ 𝑇 − 𝑋 ≤ 𝜋. (3.119)

The metric finally reads (after a weyl transformation to remove the conformal factors

and supressing the contribution from other coordinates),

𝑑𝑠2 = −𝑑𝑇 2 + 𝑑𝑋 2 (3.120)

Figure 3.4 shows the region of𝑇 ,𝑊 with the null geodesics given by the 𝑑𝑇
𝑑𝑊

= ±1 lines.

Figure 3.4: Note the suppressed 𝑆2 at every point. This is the infamous half-diamond of
Minkowski Space.One could add the 𝑆1 part which makes the point 𝑖0 into a circle. The
boundary (null infinity) is the conformal boundary of the Minkowski Spacetime.

3.5 Geodesics and Penrose Diagram for AdS

Before drawing the conformal diagram, it’s good to look at the geodesics on the AdS spacce-

time. One can do so by extremizing the action of a free particle in a 𝑑 + 1 dimensional space
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(𝑠𝑖 𝑔𝑛 (−, +, . . . , +,−)) with coordinates 𝑋 𝜇 along with a constraint (Lagrange Multiplier)

𝑋 𝜇𝑋𝜇 = 𝐿
2, which restricts the particle to AdS.

𝑆
[
𝑋𝜇, 𝜆

]
=

∫
𝑑𝜏

[
¤𝑋 𝜇 ¤𝑋𝜇 + 𝜆

(
𝐿2 − 𝑋 𝜇𝑋𝜇

)]
(3.121)

This gives the following Equations of motion:

¥𝑋 𝜇 = −𝜆𝑋 𝜇 (3.122)

𝑋 𝜇𝑋𝜇 = 𝐿
2 (3.123)

Note that, upon scaling the world-line parameter 𝜏 → 𝜏 = 𝛾𝜏 :

𝑆 [𝑋 , 𝜆] = 𝛾 · 𝑆 [𝑋 , 𝜆
𝛾2 ] (3.124)

Thus, 𝜆 can be modified by any positive real 𝛾2. We thus have 𝜆 = ± 1
𝛾2 , 0 as the three kind

of choices. Further, differentiating equation 3.123 gives, ¥𝑋𝑚𝑢𝑋𝜇 = − ¤𝑋 𝜈 ¤𝑋𝜈 . Thus 𝜆 = + 1
𝛾2

gives the timelike geodesics, 𝜆 = − 1
𝛾2 gives spacelike geodesics and 𝜆 = 0corresponds to the

null geodesics in AdS.

1. Timelike Geodesics: ¥𝑋 𝜇 = − 1
𝛾2 𝑋

𝜇, solutions of which are,

𝑋 𝜇 = 𝑣𝜇 cos 𝑡
𝛾
+ �̃�𝜇 sin 𝑡

𝛾
(3.125)

along with the constraint,

𝐿2 = 𝑣 · 𝑣 cos2 𝑡

𝛾
+ �̃� · �̃� sin2 𝑡

𝛾
+ 𝑣 · �̃� sin 2 𝑡

𝛾
(3.126)

• A trivial solution for the above is,

𝑋0 = 𝐿 cos 𝑡
𝛾
, 𝑋𝑑 = 𝐿 sin 𝑡

𝛾
, 𝑋𝑖 = 0. (3.127)

In terms of the global coordinates, this is the trajectory for a rest particle at 𝜌 = 0.
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3 Geometry of AdS Spacetime

• One of the peculiar solutions is given by,

𝑋0 =
𝐿 cos 𝑡

𝛾

cos 𝜌∗
𝑋𝑑 = 𝐿 sin 𝑡

𝛾

𝑋1 = 𝐿 tan 𝜌∗ cos 𝑡
𝛾

𝑋𝑖 = 0. (3.128)

These coordinates (not exactly in the global coordinates form) correspond to the

oscillations around 𝜌 = ±𝜌∗ in the 1-direction.

• A more general trajectory is given by,

𝑋0 =
𝐿 cos 𝑡

𝛾

cos 𝜌∗

𝑋𝑑 =
𝐿 sin 𝑡

𝛾

cos 𝜌∗
𝑋1 = 𝐿 cos 𝑡

𝛾
tan 𝜌∗

𝑋2 = 𝐿 sin 𝑡
𝛾

tan 𝜌∗

𝑋𝑖 = 0. (3.129)

This trajectory describes the particle in global coordinates, circuling at 𝜌 = 𝜌∗,

with 𝜃 (𝑡) = 𝑡 in the 1-2 plane.

2. Null Geodesics: ¥𝑋 𝜇 = 0. The solutions are just linear. The geodesics of Minkowski

space are indeed preserved.

3. Spacelike Geodesics: ¥𝑋 𝜇 = 1
𝛾2 𝑋 . Solutions take the form of hyoerbolic functions.

Some facts to note:
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3 Geometry of AdS Spacetime

1. Any timelife geodesic on AdS spacetime is equivalent to a circular orbit or a particle at

rest via a suitable conformal transformation (AdS) Isometry.

2. All timelike geodesics run at same frequency 1
𝛾

, with period 2𝜋 𝛾 .

3. A null geodesic takes a finite time to reach the boundary (which is infinitely far away)

- thus requiring a boundary condition. One usually assumes a reflective boundary

condition.

Now we try to draw the penrose diagram for AdS keeping the above in mind. In the

global coordinates the (Weyl transformed) metric reads,

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝜌2 − sin2 𝜌𝑑Ω2 (3.130)

with 𝑡 ∈ (−∞,∞) and 𝜌 ∈ [0, 𝜋2 ).

Figure 3.5: Penrose Diagram for AdS. On the right the time coordinate is compactified. The
timelike boundary is R × 𝑆1 for 𝐴𝑑𝑆3.
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3 Geometry of AdS Spacetime

3.6 Approaching the Boundary

We have seen two different metrics on the (conformal) boundary of AdS - a cylindrical one

from the global coordinates and a Minkowski one from Poincaré Coordinates. The way to

reconcile this is to note that there are, in fact, infinitely many boundary metrics one can

approach from the bulk of AdS. Starting from the global coordinates, we can see it as follow.

One can approach the boundary 𝜌 = 𝜋
2 generally via,

𝜌 =
𝜋

2 − 𝜖 𝑓 (𝑡,Ω) (3.131)

taking 𝜖 → 0 with 𝑓 (𝑡,Ω) being an arbitrary function. The metric is modified as,

𝑑𝑠2 =
1

cos2 (
𝜌
(
𝜖, 𝑓

) ) (
−𝑑𝑡2 + sin2 (

𝜌
(
𝜖, 𝑓

) )
𝑑Ω2

𝑖

)
≈ 1
𝜖2 𝑓 (𝑡,Ω)

(
−𝑑𝑡2 + (1 − 𝜖) 𝑑Ω2

𝑖

)
𝜖→0−→

[
𝑓 (𝑡,Ω)

]−2
(
−𝑑𝑡2 + 𝑑Ω2

)
(3.132)

Take 𝑓 = 𝑒−𝑡 and then define 𝑟 = 𝑒𝑡 , get back the flat space coordinates (polar form).

All these are indeed conformally related to the flat metric. For Euclidean AdS, 𝜌 = 𝜋
2 − 𝜖𝑒−𝑡

gives the flat Euclidean Boundary. 𝜌 = 𝜋
2 − 𝜖 cos(𝑡) gives a de Sitter type Boundary.

𝜌 = 𝜋
2 − 𝑧

𝐿2 (cos 𝜃 − cos 𝑡) gives the flat Lorentzian Boundary. Where, 𝑧 → 0! We cleverly

used the Poincaré coordinates where 𝑧 now fulfils the role of 𝜖!

3.6.1 Projecive Null Cone

We can define coordinates on the boundary of AdS by using the embedding space. On AdS,

we had for the Euclidean case,

𝑥0 =
𝐿

cos ℎ𝜌 cos 𝑡, 𝑊 =
𝐿

cosh 𝜌 sin 𝑡 (3.133)

𝑋𝑖 = 𝐿 tan 𝜌Ω𝑖 , 𝜌 ∈ (0, 𝜋/2) (3.134)
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3 Geometry of AdS Spacetime

At the boundary (approaching through 3.131 ), 𝑋𝐴 → ∞. We can instead define 𝑃𝐴 =

𝜖𝑋𝐴 on the boundary, which makes 𝑃𝐴 finite (𝜖 → 0). Since 𝑋 𝐴𝑋𝐴 = 𝐿2, we have 𝑃𝐴𝑃 𝐴 =

0 and also 𝑃𝐴 ∼ 𝜆𝑃𝐴. These coordinates define the projective null cone - the boundary of

Euclidean AdS in the embedding space. One can then explicitly find the geometry of the

boundary - as a section of the null projective cone corresponding to different 𝑓 s.
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Chapter 4

Symmetries in Conformal Field Theory
In the last chapter, we saw that the boundary metric of AdS is defined only up to a con-

formal scaling. This is how conformal field theory enters the theory in AdS, as a potential

QFT on the boundary. Conformal field theory is a quantum field theory that is symmetric

under conformal transformations in addition to Lorentz or Poincaré transformations. The

goal of the current chapter is to describe the conformal transformations (as a generalisation

to isometries) and the algebra (group) formed by them in general dimensions. We also study

the fundamental properties of QFTs with such symmetries. In particular, we study the be-

haviour of fields, constraints on the stress tensor and the correlation functions in general

dimensions.

4.1 Conformal Transformations

Transformations 𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜉 𝜇(𝑥) which satisfy

𝑔′𝜌𝜎 (𝑥′) = Λ(𝑥) 𝑔𝜌𝜎 (𝑥) (4.1)

This gives us the conformal killing condition,

𝜉𝜎 ;𝜌 + 𝜉𝜌;𝜎 + 𝜅 𝑔𝜌𝜎 = 0 (4.2)

where we let Λ(𝑥) ≈ 1 + 𝜖𝜅 (𝑥) + O
(
𝜖2) .

In flat spacetime, this gives,

𝜕𝜌𝜉𝜎 + 𝜕𝜎 𝜉𝜌 =
2
𝑑
𝜂𝜌𝜎 𝜕 · 𝜉 (4.3)
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4 Symmetries in Conformal Field Theory

A little more calculation and we can completely determine 𝜖𝜇,

𝜉𝜇 = 𝑎𝜇 + 𝑏𝜇𝜈𝑥𝜈 + 𝑐𝜇𝜈 𝜌𝑥𝜈𝑥 𝜌; 𝑐𝜇𝜈 𝜌 = 𝑐𝜇𝜌𝜈 . (4.4)

i.e. it can depend on x at most quadratically.

Subbing this form order by order, we get the following:

1. No restriction on the constant term 𝑎𝜇.

2. 𝑏𝜇𝜈 = 𝛼𝜂𝜇𝜈 + 𝑚𝜇𝜈 ; 𝑚𝜇𝜈 = −𝑚𝜈𝜇. 𝛼 is the trace of 𝑏. We thus have a pure trace term

(corresponding to the scaling) and a Lorentz transformation term in 𝑏𝜇𝜈 .

3. 𝑐𝜇𝜈 𝜌 = 𝜂𝜇𝜌𝑏𝜈 + 𝜂𝜇𝜈𝑏𝜌 − 𝜂𝜈 𝜌𝑏𝜇; 𝑏𝜇 = 1
𝛼
𝑐𝜎𝜎 𝜇

We then have the following:

Transformation type Finite Transformation Infinitesimal Generator (for a scalar field)
(‘𝐺𝑎’)

Translation 𝑥′𝜇 = 𝑥𝜇 + 𝑎𝜇 𝑃𝜇 = −𝑖𝜕𝜇
Dilatation/Scaling 𝑥′𝜇 = 𝛼𝑥𝜇 𝐷 = −𝑖𝑥𝜇𝜕𝜇

Rotation 𝑥′𝜇 = 𝑀
𝜇
𝜈 𝑥

𝜈 𝐿𝜇𝜈 = 𝑖 (𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇)

Special Conformal Transformation

𝑥′𝜇 = 𝑥𝜇 + 2(𝑥 · 𝑏)𝑥𝜇 − 𝑏𝜇𝑥2

↓

𝑥′𝜇 = 𝑥𝜇−𝑏𝜇𝑥2

1−2𝑏·.𝑥+𝑏2𝑥2

𝐾𝜇 = −𝑖 (2𝑥𝑚𝑢𝑥𝜈𝜕𝜈 − 𝑥2𝜕𝜇)

Table 4.1: Conformal Transformations, their finite forms, and infinitesimal generators for
(scalar) fields.

The infinitesimal and finite transformations are familiar in the cases of translation, rota-

tion, and scaling. The calculation for SCT is given in A.4.

4.2 Conformal Algebra

The conformal algebra is then just extended from Poincaré algebra adding the commutation

rules with 𝐷, 𝐾 as follows:
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4 Symmetries in Conformal Field Theory

[
𝐷, 𝑃𝜇

]
= 𝑖𝑃𝜇 (4.5)[

𝐷, 𝐾𝜇
]
= −𝑖𝐾𝜇 (4.6)[

𝐷, 𝐿𝜇𝜈
]
= 0 (4.7)[

𝐾𝜇, 𝑃𝜈
]
= 2𝑖

(
𝜂𝜇𝜈𝐷 − 𝐿𝜇𝜈

)
(4.8)[

𝐾𝜇, 𝐾𝜈
]
= 0 (4.9)[

𝐾𝜌, 𝐿𝜇𝜈
]
= 𝑖

(
𝜂𝜌𝜇𝐾𝜈 − 𝜂𝜌𝜈𝐾𝜇

)
(4.10)[

𝐿𝜇𝜈 , 𝑃𝜌
]
= 𝑖

(
𝜂𝜌𝜈𝑃𝜇 − 𝜂𝜌𝜇𝑃𝜈

)
(4.11)[

𝐿𝜇𝜈 , 𝐿𝜌𝜎
]
= 𝑖

(
𝜂𝜈 𝜌𝐿𝜇𝜎 + 𝜂𝜇𝜎 𝐿𝜈 𝜌 − 𝜂𝜇𝜌𝐿𝜈𝜎 − 𝜂𝜈𝜎 𝐿𝜇𝜌

)
(4.12)

Write the generators as follows:

𝐽𝜇𝜈 = 𝐿𝜇𝜈 (4.13)

𝐽−1,0 = 𝐷 (4.14)

𝐽−1,𝜇 =
1
2 (

(
𝑃𝜇 − 𝐾𝜇

)
(4.15)

𝐽0,𝜇 =
1
2

(
𝑃𝜇 + 𝐾𝜇

)
(4.16)

Here, 𝜇 = 1, 2, . . . , 𝑑 and 𝐽𝑎𝑏 = − 𝐽𝑎𝑏 for 𝑎, 𝑏 = −1, 0, 1, . . . , 𝑑.

Now comes the fun part!

𝐽𝑎𝑏 satisfies the following algebra,

[ 𝐽𝑎𝑏, 𝐽𝑐𝑑] = 𝑖
(
𝜂𝑎𝑑 𝐽𝑏𝑐 + 𝜂𝑏𝑐 𝐽𝑎𝑑 − 𝜂𝑎𝑐 𝐽𝑏𝑑 − 𝜂𝑏𝑑 𝐽𝑎𝑐

)
. (4.17)

Yes, this is just the 𝑆𝑂 (𝑑, 2) lie algebra if we consider the space to be 𝑀 𝑑−1,1 which

has 𝑆𝑂 (𝑑 − 1, 1) as its isometry group! And similarly, this forms an 𝑆𝑂 (𝑑 + 1, 1) algebra
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on Euclidean space with isometry group 𝑆𝑂 (𝑑)! Note the (+1,+1) while moving from the

isometry group to the conformal group!)

Poincaré + Dilations together form a sub-algebra of the full conformal group. In general,

Poincaré and dilation invariance doesn’t imply Conformal Invariance, but there are special

cases where conformal invariance follows.

4.3 Conformal Invariance in Classical Field Theory

Let 𝑆𝜇𝜈 , Δ̃, 𝜅𝜇 be a representation of the following reduced algebra of the full conformal

algebra:

[
Δ̃, 𝑆𝜇𝜈

]
= 0[

Δ̃, 𝜅𝜇
]
= −𝑖𝜅𝜇[

𝜅𝜇, 𝜅𝜈
]
= 0[

𝜅𝜌, 𝑆𝜇𝜈
]
= 𝑖

(
𝜂𝜌𝜇𝜅𝜈 − 𝜂𝜌𝜈𝜅𝜇

)
[
𝑆𝜇𝜈 , 𝑆𝜌𝜎

]
= 𝑖

(
𝜂𝜈 𝜌𝑆𝜇𝜎 + 𝜂𝜇𝜎 𝑆𝜈 𝜌 − 𝜂𝜇𝜌𝑆𝜈𝜎 − 𝜂𝜈𝜎 𝑆𝜇𝜌

)
(4.18)

So that,

𝐿𝜇𝜈𝜙 (0) = 𝑆𝜇𝜈𝜙 (0)

𝐷𝜙 (0) = Δ̃𝜙 (𝑜)

𝐾𝜇𝜙 (0) = 𝜅𝜇𝜙 (0) (4.19)

Using the BCH formula and the reduced algebra 4.18, we compute the action of the

conformal generators on the fields at arbitrary positions. Note that translation is the only

transformation that doesn’t preserve 𝑥𝜇 = 0.
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𝐿𝜇𝜈 (𝑠) = 𝑒𝑖𝑥
𝜌𝑃𝜌𝐿𝜇𝜈 (0)𝑒−𝑖𝑥

𝜌𝑃𝜌

𝐷 (𝑥) = 𝑒𝑖𝑥 𝜌𝑃𝜌𝐷 (0) 𝑒−𝑖𝑥 𝜌𝑃𝜌

𝐾𝜇 (𝑥) = 𝑒𝑖𝑥
𝜌𝑃𝜌𝐾𝜇(0)𝑒−𝑖𝑥

𝜌𝑃𝜌 (4.20)

Then we have the action on fields as follows:

𝑃𝜇𝜙(𝑥) = −𝑖𝜕𝜇𝜙(𝑥) (4.21)

𝐷𝜙(𝑥) =
(
−𝑖𝑥𝜈𝜕𝜈 + Δ̃

)
𝜙(𝑥) (4.22)

𝐾𝜇𝜙(𝑥) =
{
𝜅𝜇 + 2𝑥𝜇Δ̃ − 𝑥𝜈𝑆𝜇𝜈 − 2𝑖𝑥𝜇𝑥𝜈𝜕𝜈 + 𝑖𝑥2𝜕𝜇

}
𝜙(𝑥) (4.23)

𝐿𝜇𝜈𝜙(𝑥) = 𝑖
(
𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇

)
𝜙(𝑥) + 𝑆𝜇𝜈𝜙(𝑥) (4.24)

These are basically the𝐺𝑎 in 𝜙′(𝑥′) = (1 − 𝑖𝜔𝑎𝐺𝑎) 𝜙(𝑥) = F 𝜙(𝑥), computed using the

reduced algebra and translation rather than going through the calculation, like in deriving

A.30.

We can determine the forms of Δ̃, 𝜅𝜇 by letting the fields 𝜙(𝑥) belong to an irreducible

representation of the Lorentz Group.

Schur’s Lemma: Suppose a group𝐺 has an irreducible representation 𝑅( 𝑔) for 𝑔 ∈ 𝐺.

Then, if a matrix A commutes with all 𝑅( 𝑔), then 𝐴 is a multiple of the Identity matrix.

𝐴𝑅( 𝑔) = 𝑅( 𝑔)𝐴∀𝑔 ∈ 𝐺 =⇒ 𝐴 = 𝜆𝐼 , for some𝜆.

.

Then by 4.18 we get

Δ̃ ∝ 𝐼 , 𝜅𝜇 = 0. (4.25)

We can connect the scaling dimension to this via,

Δ̃ = −𝑖Δ. (4.26)

76



4 Symmetries in Conformal Field Theory

We will work out the details in the next section.

We are now equipped to answer the question, how do fields behave under a general con-

formal transformation?

We will answer this here but discuss the details again in the next section.

The scalar fields transform as,

𝜙(𝑥) −→ 𝜙′(𝑥′) =| 𝜕𝑥
′

𝜕𝑥
|−Δ

𝑑 𝜙(𝑥) (4.27)

where, | 𝜕𝑥′
𝜕𝑥

|= Λ(𝑥)− 𝑑2 - the Jacobian of conformal transformations. Recall Λ(𝑥) from

equation 4.1.

The fields behaving like above under conformal transformations are called Quasi Pri-

mary Fields.

4.3.1 Quasi-Primary Fields: A derivation

One can derive the transformation of fields under general conformal transformations. We

could ask the same question for the Lorentz group as well. How do the fields behave under

them? We generally write 𝜙′(𝑥′) = 𝐷𝜙(𝑥) where 𝐷 is some representation of the Lorentz

Group on the space of fields, generated by 𝑆 𝜌𝜈 satisfying the Lorentz Lie algebra. used this

to derive the generators for fields that give us this finite form! After all, we were in the spell of

‘Particles are an irreducible representation of the Poincaré group’. So are the fields of those

particles. In our case of CFT, the representation of the Conformal Group is almost known

because the fields we consider are irreducible representations of the Lorentz group and the

rest of the details follow from Schur’s lemma; we just need to use the generators to derive the

full finite form.
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Consider the full conformal transformation,

𝑥′𝜇 = 𝑥𝜇 + 𝜖
{
𝑎𝜇 + 𝑥𝜇 + 𝜔𝜇𝜈 𝑥𝜈 + 2(𝑏 · 𝑥)𝑥𝜇 − 𝑏𝜇𝑥2}

=⇒ ¤𝑥𝜇 = 𝑎𝜇 + 𝑥𝜇 + 𝜔𝜇𝜈 𝑥𝜈 + 2(𝑏 · 𝑥)𝑥𝜇 − 𝑏𝜇𝑥2 (4.28)

A general theory of symmetries in QFT (behaviour of fields) is discussed in the appendix A.

For the behaviour of the field under the above general conformal transformation, we just

need to include all the terms using 4.21- 4.24, according to equation A.21.

𝜙′(𝑥) = 𝜙(𝑥) + 𝜖
{
−𝑖𝑎𝜇𝑃𝜇 − 𝑖𝐷 − 𝑖2𝜔

𝜌𝜈𝐿𝜌𝜈 − 𝑖𝑏𝜇𝐾𝜇
}

(4.29)

So,

¤𝜙(𝑥) =
[
− 𝑎𝜇𝜕𝜇 − 𝑥𝜇𝜕𝜇 − 𝑖Δ̃ + 1

2𝜔
𝜌𝜈

(
𝑥𝜌𝜕𝜈 − 𝑥𝜈𝜕𝜌

)
− 𝑖2𝜔

𝜌𝜈𝑆𝜌𝜈

+ 𝑏𝜇
(
−𝑖𝜅𝜇 − 2𝑖𝑥𝜇Δ̃ + 𝑥𝜈𝑆𝜇𝜈 − 2𝑥𝜇𝑥𝜈𝜕𝜈 + 𝑥2𝜕𝜇

) ]
𝜙(𝑥) (4.30)

Now, for a spinless 𝜙(𝑥) let

Δ̃ = −𝑖Δ𝐼 , 𝜅𝜇 = 0, 𝑆𝜇𝜈 = 0.

Then, the infinitesimal flow for the full conformal transformation is,

¤𝜙(𝑥) =
[
− 𝑎𝜇𝜕𝜇 − 𝑥𝜇𝜕𝜇 − Δ + 1

2𝜔
𝜌𝜈

(
𝑥𝜌𝜕𝜈 − 𝑥𝜈𝜕𝜌

)
+ 𝑏𝜇

(
−2𝑥𝜇Δ − 2𝑥𝜇𝑥𝜈𝜕𝜈 + 𝑥2𝜕𝜇

) ]
𝜙(𝑥)

(4.31)

Note that we are interested to know the relation between 𝜙(𝑥′) and 𝜙(𝑥), i.e F (𝜙(𝑥))

(see A). A lot of the intricacy in the above equation comes from comparing fields at the same

points. If we were to compare them at different points, which essentially translates to finding

F , then many terms might cancel out to give a less dauntingly looking flow.

Let’s work it out for the known case of Lorentz transformations first. Assume we do not

know F , but that we do know the generator 𝐿𝜌𝜈 given by equation 4.24.
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In principle, for a scalar field, we should get F (𝜙(𝑥)) to be just 𝜙(𝑥). Let’s see. We will

try to do this in the 𝜖-variation form.

𝑥′𝜇 = 𝑥𝜇 + 𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
(4.32)

𝜙′(𝑥′) = 𝜙(𝑥) + 𝜔𝑎
𝛿F
𝛿𝜔𝑎

(𝑥) (4.33)

𝜙′(𝑥) = 𝜙(𝑥) − 𝑖𝜔𝑎𝐺𝑎𝜙(𝑥) (4.34)

The infinitesimal nature of 𝜔 can be captured by 𝜖, allowing us to write the flow form as

follows

𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
(4.35)

¤𝑥𝜇 = 𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
(4.36)

𝜙(𝑥) (𝜖) = 𝜙(𝑥) − 𝑖 𝜖𝜔𝑎𝐺𝑎𝜙(𝑥) (4.37)

¤𝜙(𝑥) = −𝑖𝜔𝑎𝐺𝑎𝜙(𝑥) (4.38)

𝜙 (𝑥 (𝜖), 𝜖) = 𝜙(𝑥) + 𝜖𝜔𝑎
𝛿F
𝛿𝜔𝑎

(𝑥) (4.39)

𝑑

𝑑𝜖
𝜙 (𝑥 (𝜖), 𝜖) = 𝜔𝑎

𝛿F
𝛿𝜔𝑎

(𝑥) (4.40)

equation 4.40 is intersting. Use the chain rule and find that,

𝜔𝑎
𝛿F
𝛿𝜔𝑎

= ¤𝜙(𝑥) + ¤𝑥𝜇𝜕𝜇𝜙(𝑥) (4.41)

Thus in the 𝜖-variation form, the finite transformation of the fields is,

𝑑

𝑑𝜖
𝜙 (𝑥 (𝜖), 𝜖) = ¤𝜙(𝑥) + ¤𝑥𝜇𝜕𝜇𝜙(𝑥) (4.42)

where to recall again,

¤𝑥𝜇 = 𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
(4.43)

¤𝜙(𝑥) = −𝑖𝜔𝑎𝐺𝑎𝜙(𝑥) (4.44)
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Note that all the terms in the RHS have their 𝜖 dependence, too; we dropped it for con-

venience.

Now to the Lorentz transformations. It should be simple - we expect the RHS to vanish.

¤𝑥𝜇 = 1
2Ω

𝜌𝜎
(
𝛿
𝜇
𝜌 𝑥𝜎 − 𝛿

𝜇
𝜎 𝑥𝜌

)
(4.45)

¤𝜙(𝑥) = − 𝑖2Ω
𝜌𝜎

(
𝑖

(
𝑥𝜌𝜕𝜎 − 𝑥𝜎 𝜕𝜌

))
(4.46)

Clearly,

¤𝑥𝜇𝜕𝜇 ∼ 𝑥𝜎 𝜕𝜌 − 𝑥𝜌𝜕𝜎

¤𝜙(𝑥) ∼ 𝑥𝜌𝜕𝜎 − 𝑥𝜎 𝜕𝜌

And they indeed cancel out! Our guess for a less daunting flow form is correct . . .. Ba-

sically, our generators include both the functional change and the argument (coordinate)

change. So things simplify when we put everything together. [Actually, recall in the Lorentz

case, the generators were determined so that when you put everything together, things are

simpler, i.e. give out a representation of the Lorentz Group]

We can now tackle the full conformal group. Use equations 4.28 and 4.31 in 4.42,

𝑑

𝑑𝜖
𝜙 (𝑥 (𝜖), 𝜖) =

[
− 𝑎𝜇𝜕𝜇 − 𝑥𝜇𝜕𝜇 − Δ + 1

2Ω
𝜌𝜎

(
𝑥𝜌𝜕𝜎 − 𝑥𝜎 𝜕𝜌

)
+ 𝑏𝜇

(
−2𝑥𝜇Δ − 2𝑥𝜇𝑥𝜈𝜕𝜈 + 𝑥2𝜕𝜇

) ]
𝜙(𝑥)

+
[
𝑎𝜇 + 𝑥𝜇 + 1

2Ω
𝜌𝜎

(
𝛿
𝜇
𝜌 𝑥𝜎 − 𝛿

𝜇
𝜎 𝑥𝜌

)
+ 2(𝑏 · 𝑥)𝑥𝜇 − 𝑏𝜇𝑥2

]
𝜕𝜇𝜙(𝑥)

(4.47)

Clearly, this is just

𝑑

𝑑𝜖
𝜙 (𝑥 (𝜖), 𝜖) = −Δ𝜙(𝑥) − 2𝑏 · 𝑥Δ𝜙(𝑥)

= −Δ (1 + 2𝑏 · 𝑥) 𝜙(𝑥) (4.48)
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Let’s try to relate this to the conformal scaling factor of the metric Λ(𝑥) in equation 4.1,

which technically dictates/defines the whole conformal transformation. From the analysis

given in the section 4.1, we write

Λ′(𝑥′) ≈1 + 𝜖𝜅 (𝑥)

𝜅 (𝑥) = − 2
𝑑
𝜕 · 𝜉 (4.49)

Using the 𝜉 for the full conformal transformation, we get

Λ(𝑥) = 1 + 𝜖
(
− 2
𝑑
(𝑑 + 2(𝑏.𝑥) (1 + 𝑑) − 2(𝑏.𝑥))

)
= 1 − 𝜖

[
2 (1 + 2𝑏 · 𝑥)

]
(4.50)

Looks like it is indeed connected. So for general conformal transformation, we have (ex-

panding Λ(𝑥) = 1 + 𝜖𝜅 (𝑥))

𝑔′𝜇𝜈 (𝑥′) = Λ(𝑥) 𝑔𝜇𝜈 (𝑥) = 1 − 𝜖 [−2 (1 + 2𝑏 · 𝑥)] 𝑔𝜇𝜈 (4.51)

so we have on the same lines of equations 4.39 and 4.40 the following evolution of the

metric -

𝑑

𝑑𝜖
𝑔𝜇𝜈 (𝑥 (𝜖), 𝜖) = −2 (1 + 2𝑏 · 𝑥) 𝑔𝜇𝜈 (𝑥 (𝜖), 𝜖) (4.52)

Using this in equation 4.48 gives,

¤𝜙
𝜙
=
Δ
2

¤𝑔𝜇𝜈
𝑔𝜇𝜈

𝜙′(𝑥′) =
𝑔′
𝜇𝜈 (𝑥′)

𝑔𝜇𝜈 (𝑥)

Δ/2

𝜙(𝑥) = Λ(𝑥)Δ/2𝜙(𝑥). (4.53)

We thus have the general conformal transformation law for spinless fields.
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4.3.2 Energy Momentum Tensor

Now, under conformal transformations,

𝛿 𝑆 =
1
𝑑

∫
𝑑𝑑𝑥𝑇

𝜇
𝜇 (𝜕 · 𝜖) (4.54)

1. Tracelessness of 𝑇 𝜇𝜈 =⇒ Invariance of Action under Conformal Transformations!

And the converse need not be true since 𝜖 is not arbitrary.

2. Under certain conditions,𝑇 𝜇𝜈 of a scale invariant theory can be made traceless.

Consider 𝑥′𝜇 = (1 + 𝛼) 𝑥𝜇; F
(
𝜙
)
= (1 − 𝛼Δ) 𝜙 - the scale transformation.

Then we have,

𝑗
𝜇

𝐷
= 𝑇𝑐

𝜇
𝜈𝑥
𝜈 + 𝜕L

𝜕𝜕𝜇𝜙
Δ.𝜙, (4.55)

here,𝑇𝑐 is the canonical Stress tensor - due to translations.

Define the Virial of the field 𝜙 to be:

𝑉 𝜇 =
𝛿L

𝛿 (𝜕 𝜌𝜙)
(
𝜂𝜇𝜌Δ + 𝑖𝑆 𝜇𝜌

)
𝜙 (4.56)

For a scale-invariant theory if it possible to write

𝑉 𝜇 = 𝜕𝛼𝜎
𝛼𝜇 (4.57)

for some 𝜎 𝛼𝜇, then let:

𝜎
𝜇𝜈

+ =
1
2
(𝜎 𝜇𝜈 + 𝜎 𝜈𝜇) (4.58)

so that defining,

𝑋 𝜆𝜌𝜇𝜈 =
2

(𝑑 − 2)

{
𝜂𝜆𝜌𝜎

𝜇𝜈

+ − 𝜂𝜆𝜇𝜎 𝜌𝜈+ − 𝜂𝜆𝜇𝜎 𝜈 𝜌+ + 𝜂𝜇𝜈𝜎 𝜆𝜌+ + 1
𝑑 − 1

(
𝜂𝜆𝜌𝜂𝜇𝜈 − 𝜂𝜆𝜇𝜂 𝜌𝜈

)
𝜎 𝛼+ 𝛼

}
(4.59)
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allows us to modify𝑇 𝜇𝜈 as follows:

𝑇 𝜇𝜈 = 𝑇
𝜇𝜈
𝑐 + 𝜕𝜌𝐵 𝜌𝜇𝜈 +

1
2 𝜕𝜆𝜕𝜌𝑋

𝜆𝜌𝜇𝜈 (4.60)

The first two terms just correspond to the Belifante Tensor, and the third is symmetric

in 𝜇, 𝜈 and 𝜕𝜇𝜕𝜆𝜕𝜌𝑋 𝜆𝜌𝜇𝜈 = 0. The trace of the third term is 𝜕𝜇𝑉 𝜇.

We then have,

𝑇
𝜇
𝜇 = 𝜕𝜇𝑗

𝜇

𝐷
(4.61)

which vanishes on the shell! And we can thus write,

𝑗
𝜇

𝐷
= 𝑇

𝜇
𝜈 𝑥

𝜈 (4.62)

ad the current corresponding to Dilation. But this analysis is clearly valid only for 𝑑 ≠ 2.

For a 𝑑 = 2 free field, the canonical/Belifante𝑇 𝜇𝜈 has a vanishing trace! So, no modification

is required! There is no general proof known in 2 dimensions regarding the traclessness for

scale-invariant theories. But we will assume it to be true and continue. We will show that the

expectation value of𝑇 𝜇𝜇 vanishes in 𝑑 = 2 if conformal invariance is present to justify this.

4.4 Conformal Symmetry and Correlation Functions

Now, we move to the behaviour of correlation functions under conformal transformations.

The richness of conformal invariance in 2 Dimensions allows us to define theo-

ries based solely on the symmetry properties of the correlation functions, with-

out reference (except in a few cases) to an action or a functional integral! ([7])

It speaks the strength of the conformal symmetry. Rather than counting the indepen-

dent degrees of CFT, we focus on the number of local operators closed under conformal

transformations.
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4.4.1 2-point Correlators

We have for Quasi-Primary, spinless fields,

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ =
��� 𝜕𝑥′
𝜕𝑥

���Δ1
𝑑

𝑥=𝑥1

��� 𝜕𝑥′
𝜕𝑥

���Δ2
𝑑

𝑥=𝑥2
⟨𝜙1(𝑥′1)𝜙2(𝑥′2)⟩ (4.63)

• Scale Inv. =⇒ a prefactor of 𝜆Δ1+Δ2 .

• Rotation and translation Inv. further restricts the correlator to 𝑓 ( | 𝑥1 − 𝑥2 |), such

that 𝑓 (𝑥) = 𝜆Δ1+Δ2 𝑓 (𝜆𝑥).

So thus far, we can say that,

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ =
𝐶12

| 𝑥1 − 𝑥2 |Δ1+Δ2
(4.64)

Now, let’s analyze what SCT does -

Firstly, note that under SCT,

| 𝑥1 − 𝑥2 |→ | 𝑥1 − 𝑥2 |

𝛾
1
2

1 𝛾
1
2

2

(4.65)

where,

| 𝜕𝑥
′

𝜕𝑥
|𝑆𝐶𝑇=

1(
1 − 2𝑏 · 𝑥 + 𝑏2𝑥2)𝑑 = 𝛾−𝑑 (4.66)

So, 𝛾𝑥=𝑥1 = 𝛾1, 𝛾𝑥=𝑥2 = 𝛾2.

So for respecting equation 4.63 we must have

𝐶12

| 𝑥1 − 𝑥2 |Δ1+Δ2
=

𝐶12

| 𝑥1 − 𝑥2 |Δ1+Δ2

(
𝛾1𝛾2

) (Δ1+Δ2)/2

𝛾
Δ1
1 𝛾

Δ2
2

To satisfy this identically - we must have Δ1 = Δ2.
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Hence, the 2-point correlator for a conformally invariant theory is completely restricted

up to a constant!

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ =
{

𝐶12
|𝑥1−𝑥2 |2Δ1

Δ1 = Δ2

0 Δ1 ≠ Δ2
(4.67)

4.4.2 3-point Correlator

The Scale, translation and rotation impose a similar restriction again,

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)⟩ =
𝐶

(𝑎𝑏𝑐)
123

𝑥𝑎12𝑥
𝑏
23𝑥

𝑐
31

st. 𝑎 + 𝑏 + 𝑐 = Δ1 + Δ2 + Δ3. Note that the above can be summed over 𝑎, 𝑏, 𝑐.

But SCT imposes the following -

𝐶
(𝑎𝑏𝑐)
123

𝛾
Δ1
1 𝛾

Δ2
2 𝛾

Δ3
3

=
𝐶

(𝑎𝑏𝑐)
123

𝛾
Δ1
1 𝛾

Δ2
2 𝛾

Δ3
3

(
𝛾1𝛾2

) 𝑎
2
(
𝛾2𝛾3

) 𝑏
2
(
𝛾3𝛾1

) 𝑐
2

𝑥𝑎12𝑥
𝑏
23𝑥

𝑐
31

Thus, the three-point correlator is then completely restricted by a constant again as fol-

lows:

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)⟩ =
𝐶123

𝑥
Δ1+Δ2−Δ3
12 𝑥

Δ2+Δ3−Δ1
23 𝑥

Δ3+Δ1−Δ2
13

(4.68)

Such a complete evaluation of the form of correlation functions stops at 3-point func-

tions. For, there are cross-ratios, which are conformal invariants, possible in higher correla-

tors.

4.4.3 4pt. Correlator

If we have four points, 𝑥1, 𝑥2, 𝑥3, 𝑥4, then we can construct anharmonic ratios/cross ratios,

which are invariant under CTs given by -
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Γ(𝑥1, 𝑥2, 𝑥3, 𝑥4) =
𝑥12𝑥34
𝑥13𝑥24

or 𝑥12𝑥34
𝑥14𝑥23

(4.69)

So that,

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)𝜙4(𝑥4)⟩ = 𝑓
(
𝑥12𝑥34
𝑥13𝑥24

,
𝑥12𝑥34
𝑥14𝑥23

) 4∏
𝑖<𝑗

𝑥
Δ
3 −Δ𝑖−Δ𝑗
𝑖𝑗

(4.70)

where, Δ =
∑4
𝑖=1 Δ𝑖 .

4.4.4 Ward Identities for Conformal Symmetry

Ward Identity for translation invariance is:

𝜕𝜇 ⟨𝑇
𝜇
𝜈 𝑋 ⟩ =

∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)
𝜕

𝜕𝑥𝜈
𝑖

⟨𝑋 ⟩ (4.71)

This also holds true even after modification - as in equation 4.60. (Identical Divergence-

less)

Ward Identity for Lorentz Invariance:

𝑗 𝜇𝜈 𝜌 = 𝑇 𝜇𝜈𝑥 𝜌 −𝑇 𝜇𝜌𝑥𝜈 (4.72)

This can again be obtained post-modification using Belifante tensor . . .. Here𝑇 𝜇𝜈 is the

same as that of translation stress tensor! That’s the result of Belifante modification or any

symmetrization scheme.

So Ward Identity reads,

𝜕𝜇 ⟨(𝑇 𝜇𝜈𝑥 𝜌 −𝑇 𝜇𝜌𝑥𝜈) 𝑋 ⟩ =
∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)
[(
𝑥𝜈𝑖 𝜕

𝜌

𝑖
− 𝑥 𝜌

𝑖
𝜕 𝜈𝑖

)
⟨𝑋 ⟩ − 𝑖𝑆 𝜈 𝜌

𝑖
⟨𝑋 ⟩

]
(4.73)

𝑆𝑖 is the spin generator for the 𝑖-th field 𝜙𝑖 .

Using 4.71 we can further write this as
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⟨𝑇 𝜌𝜈 −𝑇 𝜈 𝜌𝑋 ⟩ = −𝑖
∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)𝑆
𝜈 𝜌

𝑖
⟨𝑋 ⟩ . (4.74)

𝑇 𝜇𝜈 symmetric within correlation functions, except at the contact points!

For scale invariance: we have for 𝑑 > 2 (but we will assume it can be done for d = 2 as

well)

𝑗
𝜇

𝐷
= 𝑇

𝜇
𝜈 𝑥

𝜈

from equation 4.62 (T modified to be traceless on the shell).

Ward Identity reads -

𝜕𝜇 ⟨𝑇
𝜇
𝜈 𝑥

𝜈𝑋 ⟩ = −
∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)
{
𝑥𝜈𝑖

𝜕

𝜕𝑥𝜈
𝑖

⟨𝑋 ⟩ + Δ𝑖 ⟨𝑋 ⟩
}

(4.75)

Using equation 4.71 again gives,

⟨𝑇 𝜇𝜇 𝑋 ⟩ = −
∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)Δ𝑖 ⟨𝑋 ⟩ . (4.76)

The stress tensor is traceless again except at the contact points!

Equations 4.71, 4.74, 4.76 are the three ward identities for Conformal Invariance. We

have obtained the above correlation functions by substitution of appropriate currents in the

general Ward identity B.9.

4.4.5 Tracelessness of the stress tensor in 2 dimensions

Our goal is to show that vacuum expectation value of the trace of energy-momentum tensor

(or of its square) vanishes in 2 dimensions if the theory has scale, rotation and translation in-

variance! This is basically a discussion on the lines of whether the stress tensor can be made

traceless (thus implying the considered theory is conformally invariant) given scale, Lorentz

and translation invariance. We already showed this for 𝑑 > 2. Here, we try to justify our
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generalization of that to even 𝑑 = 2 by showing that the expectation value of the trace of

energy-momentum tensor vanishes between ground states anyway.

We consider a 2-point function of Energy-Momentum Tensor called Schwinger Function.

𝑆𝜇𝜈 𝜌𝜎 (𝑥) = ⟨𝑇𝜇𝜈 (𝑥)𝑇𝜌𝜎 (0)⟩ (4.77)

By translation, scale symmetry and symmetrization, we get

•

𝑆𝜇𝜈 𝜌𝜎 = ⟨𝑇𝜇𝜈 (0)𝑇𝜌𝜎 (−𝑥)⟩

= ⟨𝑇𝜌𝜎 (−𝑥)𝑇𝜇𝜈 (0)⟩

= 𝑆𝜌𝜎 𝜇𝜈 (−𝑥)
if parity symmetry

= 𝑆𝜌𝜎 𝜇𝜈 (𝑥)

• 𝑆𝜇𝜈 𝜌𝜎 = 𝑆𝜈𝜇𝜌𝜎 = 𝑆𝜇𝜈 𝜌𝜎 = 𝑆𝜈𝜇𝜎 𝜌

• 𝑆𝜇𝜈 𝜌𝜎 (𝜆𝑥) = 𝜆−4𝑆𝜇𝜈 𝜌𝜎

The general form of the functions given these symmetries can be written as,

𝑆𝜇𝜈 𝜌𝜎 (𝑥) = (𝑥2)−4
{
𝐴1 𝑔𝜇𝜈 𝑔𝜌𝜎 (𝑥2)2+𝐴2

(
𝑔𝜇𝜌 𝑔𝜈𝜎 + 𝑔𝜇𝜎 𝑔𝜈 𝜌

)
(𝑥2)2 (4.78)

+ 𝐴3
(
𝑔𝜇𝜈𝑥𝜌𝑥𝜎 + 𝑔𝜌𝜎 𝑥𝜇𝑥𝜈

)
𝑥2 + 𝐴4𝑥𝜇𝑥𝜈𝑥𝜌𝑥𝜎

}
(4.79)

𝜕𝜇𝑇
𝜇𝜈 = 0 extends to the Schwinger function to give

𝑆𝜇𝜈 𝜌𝜎 (𝑥) =
𝐴

(𝑥2)4

{ (
3𝑔𝜇𝜈 𝑔𝜌𝜎 − 𝑔𝜇𝜌 𝑔𝜈𝜎 − 𝑔𝜇𝜎 𝑔𝜈 𝜌

)
(𝑥2)2−4

(
𝑔𝜇𝜈𝑥𝜌𝑥𝜎 + 𝑔𝜌𝜎 𝑥𝜇𝑥𝜈

)
𝑥2+8𝑥𝜇𝑥𝜈𝑥𝜌𝑥𝜎

}
(4.80)

And it follows simply that
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4 Symmetries in Conformal Field Theory

𝑆
𝜇 𝜎
𝜇 𝜎 (𝑥) ≡ ⟨𝑇 𝜇𝜇 (𝑥)𝑇 𝜎𝜎 (0)⟩ = 0 (4.81)

In particular, we have

⟨𝑇 𝜇𝜇 (0)2⟩ = 0. (4.82)

Thus, operator𝑇 𝜇𝜇 has zero expectation value and zero standard deviation in the ground

state!

But the general result is equation 4.75 as already noted - the trace of the EM tensor van-

ishes within correlation functions except at contact points.
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Chapter 5

Conformal Invariance in 2 Dimensions
In two dimensions, the symmetry group is extended. In addition to the global symmetries

we already noted in the last chapter, there are local symmetries forming an infinite dimen-

sional algebra. These additional transformations are essentially the holomorphic and anti-

holomorphic functions on the complex plane. After studying these in detail, we rewrite the

symmetry identities in the (anti) holomorphic form along the while motivating the behav-

ior of (conformal) fields given by a conformal dimension. We can then read out the operator

product expansion of Stress tensor with other conformal fields. Example cases of free Boson,

free Fermion and Ghost system are discussed where we identify the conformal fields and their

product expansion with stress tensor. In all the examples, we note the anomalous term in the

product expansion of stress tensor with itself deviating from the conformal nature of a field.

This is given by the central charge of the theory, and we relate it to the quantum breaking

of the conformal symmetry due to introduction of a macroscopic scale. It is a special case of

trace anomaly or Weyl anomaly in general dimensions. This is an important aspect of CFT,

and we will discuss this further while connecting AdS/CFT and Geometry in Chapter 9.

5.1 Conformal Transformations in 2 Dimensions - Lo-
cal, Global and The Witt Algebra

Start with coordinates 𝑧0, 𝑧1 ∈ R2. For the transformation 𝑧𝜇 → 𝑤𝜇(𝑧) to be conformal we

need

𝑔 𝜇𝜈 → 𝑔′𝜇𝜈 (𝑤) = 𝜕𝑤
𝜇

𝜕 𝑧𝛼
𝜕𝑤𝜈

𝜕 𝑧𝛽
𝑔 𝛼𝛽

𝑐𝑜𝑛𝑓 .
= Λ(𝑧) 𝑔 𝜇𝜈 (𝑧) (5.1)
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5 Conformal Invariance in 2 Dimensions

In the case of Euclidean metric 𝑔 𝜇𝜈 = 𝛿 𝜇𝜈 we have,

𝜕𝑤1

𝜕 𝑧0 =
𝜕𝑤0

𝜕 𝑧1 and 𝜕𝑤
0

𝜕 𝑧0 = − 𝜕𝑤
1

𝜕 𝑧1 (5.2)

𝜕𝑤1

𝜕 𝑧0 = − 𝜕𝑤
0

𝜕 𝑧1 and 𝜕𝑤
0

𝜕 𝑧0 =
𝜕𝑤1

𝜕 𝑧1 (5.3)

These are just the Cauchy-Riemann conditions for the function

𝑤(𝑧0, 𝑧1) = 𝑤0(𝑧0, 𝑧1) + 𝑖𝑤1(𝑧0, 𝑧1) (5.4)

to be holomorphic or anti-holomorphic.

An equivalent formulation can be drawn by using complex coordinates 𝑧, �̄� as follows:

𝑧 = 𝑧0 + 𝑖 𝑧1, �̄� = 𝑧0 − 𝑖 𝑧1 (5.5)

𝑧0 =
1
2
(𝑧 + �̄�) , 𝑧1 =

1
2𝑖

(𝑧 − �̄�) (5.6)

𝜕𝑧 =
1
2
(𝜕0 − 𝑖𝜕1) ≡ 𝜕, 𝜕�̄� =

1
2
(𝜕0 + 𝑖𝜕1) ≡ 𝜕 (5.7)

𝜕0 = 𝜕𝑧 + 𝜕�̄� , 𝜕1 = 𝑖 (𝜕𝑧 − 𝜕�̄�) (5.8)

This allows us to write the holomorphic and anti-holomorphic conditions as

𝜕�̄�𝑤(𝑧, �̄�) = 0, 𝜕𝑧�̄�(𝑧, �̄�) = 0 (5.9)

Thus,

𝑤(𝑧, �̄�) ≡ 𝑤(𝑧), and �̄�(𝑧, �̄�) ≡ �̄�( �̄�) (5.10)

The metric in the coordinates 𝑧, �̄� becomes -
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𝑔𝜇𝜈 =

(
0 1

2
1
2 0

)
, 𝑔 𝜇𝜈 =

(
0 2
2 0

)
(5.11)

The metric allows us to move between the covariant holomorphic index and contravari-

ant anti-holomorphic index as follows:

𝑔 𝜇𝜈 𝑧𝜇 = 𝑧
𝜈 , 𝑔𝜇𝜈𝑦

𝜇 = 𝑦𝜈 (5.12)

with 𝑧𝜇 = (𝑧, �̄�) =⇒ 𝑧𝜈 = 2( �̄�, 𝑧) and 𝑦𝜇 = (�̄�, 𝑦) =⇒ 𝑦𝜈 = 1
2 (𝑦, �̄�). Basically, the

metric swaps the hol. and anti-hol. index but also adds a factor of 2.

We also write the anti-symmetric matrix 𝜀𝜇𝜈 as follows:

𝜀𝜇𝜈 =

(
0 1

2 𝑖
−1

2 𝑖 0

)
, 𝜀𝜇𝜈 =

(
0 −2𝑖
2𝑖 0

)
(5.13)

We have basically let 𝜀hol.
𝜇𝜈 = 𝜀𝑐𝑎𝑟𝑡 .𝜇𝜈 × 𝐽 . Where J is the Jacobian.

The above discussion on transformations is summarized as follows -

𝑧, �̄� → 𝑤(𝑧), �̄�( �̄�) (5.14)

• The proper way to think about this in the light of real coordinates (𝑧0, 𝑧1), which we

began with, is to let 𝑧0, 𝑧1 ∈ C so that equations 5.5-5.8 just correspond to change

of independent variables. And to get back the real coordinates 𝑧0, 𝑧1, we consider the

real surface 𝑧∗ = �̄�. This is our physical space. We continue to make deductions on

various forms of correlators or other functions based on this scheme of considering

the real surface underneath. This offers a convenient representation of the theory in

the holomorphic and anti-holomorphic forms, as we will see - they decouple.

• Any analytical map between complex planes is conformal! One can trivially see this by

-
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5 Conformal Invariance in 2 Dimensions

𝑑𝑤 =
𝜕𝑤

𝜕𝑧
𝑑𝑧 +

�
�

��𝜕𝑤

𝜕 �̄�
𝑑�̄� =

𝑑𝑤

𝑑𝑧
𝑑𝑧 (5.15)

The dilation factor is given by the | 𝑑𝑤
𝑑𝑧

| and the rotation by Arg( 𝑑𝑤
𝑑𝑧
).

So conformal transformations in 2 dimensions are the set of all analytical maps, with

group multiplication being the composition of maps. Since such functions admit the

Laurent series, which contains infinite parameters/coefficients - this class of 2d trans-

formations is infinite-dimensional. This becomes clearer when we derive the algebra

of generators of such transformations.

• Although it might look like we are talking about coordinates (𝑧, �̄�) on C2, we will

mostly just deal with holomorphic functions and anti-holomorphic functions on C

because the whole theory decouples into these, just like the transformations already

did too! Most of the time, we will also not discuss the anti-holomorphic part of the

theory since it runs parallelly, and we can always add it back trivially most of the time.

• Actually we work not on C but on the Riemann sphere C ∪ ∞ (identifying the point

at infinity with the tip of the sphere) which is compact. That is while we are moving

from 𝑅2 to C we are also identifying infinity with a single point and compactifying

it. The reason for doing this here might be relevant to the fact that poles become re-

movable singularities on the range C ∪ ∞. That is, holomorphic functions are then

allowed to have poles too! However, note that such compact spaces are more physi-

cally helpful due to easier boundary conditions. We thus have dual benefits of such a

compactification - trivial boundary conditions and a bigger class of transformations.

This information should allow us to see the behaviour of fields under such transforma-

tions.Any holomorphic infinitesimal transformation using the Laurent expansion around

𝑧 = 0, �̄� = 0 can be written as -
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𝑧′ = 𝑧 + 𝜖(𝑧); 𝜖(𝑧) =
+∞∑︁
∞
𝑐𝑛𝑧

𝑛+1. (5.16)

and similarly �̄�′ = �̄� + 𝜖( �̄�)

So, for a spinless field, the variation in the field is given by -

𝜙′(𝑧′, �̄�′) = 𝜙(𝑧, �̄�)

= 𝜙(𝑧′, �̄�′) − 𝜖(𝑧′)𝜕′𝜙(𝑧′, �̄�′) − 𝜖′( �̄�′)𝜕′𝜙(𝑧′, �̄�′)

So,

𝛿𝜙 = −𝜖(𝑧)𝜕𝜙 − 𝜖( �̄�)𝜕𝜙 (5.17)

=
∑︁
𝑛

{
𝑐𝑛𝑙𝑛𝜙(𝑧, �̄�) + 𝑐𝑛𝑙𝑛𝜙(𝑧, �̄�)

}
(5.18)

where,

𝑙𝑛 = −𝑧𝑛+1𝜕𝑧 , 𝑙𝑛 = −�̄�𝑛+1𝜕�̄� (5.19)

are the generators of the local conformal transformations acting on the fields, akin to

A.21. We can derive the algebra of these generators to be -

[𝑙𝑛, 𝑙𝑚] = (𝑛 −𝑚) 𝐿𝑛+𝑚 (5.20)[
𝑙𝑛, 𝑙𝑚

]
= (𝑛 −𝑚) 𝑙𝑛+𝑚 (5.21)[

𝑙𝑛, 𝑙𝑚
]
= 0 (5.22)

We deduce that the local conformal algebra is a direct sum of two isomorphic algebras:

L ⊕ L̄. This is called the Witt Algebra, which is clearly infinite-dimensional.We are calling
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the generators and thus the algebra local because they are not defined everywhere, and in fact,

such transformations do not exactly form a group since they are not all defined and invertible

everywhere. We can look for a subset of these transformations, which are global, those which

are well behaved as 𝑧 → 0 and 𝑧 → ∞. [𝑧 → ∞ ≡ 𝑤 → 0, 𝑧 = − 1
𝑤

]

Such well behavedness condition on 5.16 gives,

𝑐𝑛 = 0∀𝑛 < −1, 𝑐𝑛 = 0∀𝑛 > 1. (5.23)

So we have {𝑙−1, 𝑙0, 𝑙1} ∪
{
𝑙−1, 𝑙0, 𝑙1

}
generating the global conformal transformations.

𝑙−1 = −𝜕𝑧 , 𝑙0 = −𝑧𝜕𝑧 , 𝑙1 = −𝑧2𝜕𝑧 . (5.24)

At this point, we can compare these with table 4.1 applied to 2 dimensions.

• 𝑙−1 and 𝑙−1 generate translations.

• 𝑙0 + 𝑙0 generates dilations.

• 𝑖 (𝑙0 − 𝑙0) generates rotations.

• 𝑙1, 𝑙1 generate special conformal transformations.

Convert the differential generators to Cartesian versions to immediately see that these

indeed are the rotation and translations.

These are the true conformal generators leading to the global conformal group or special

conformal group akin to the conformal groups in other dimensions. But in 2 dimensions, we

have a larger class of conformal transformations possible, albeit local. Generators preserving

the real surface are 𝑙𝑛 + 𝑙𝑛 and 𝑖
(
𝑙𝑛 − 𝑙𝑛

)
which corresponding to dilations and rotations for

𝑛 = 0.
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We can derive the finite form of the global transformation from the infinitesimal trans-

formation,

𝑧′ = 𝑧 + 𝑐−1 + 𝑐0𝑧 + 𝑐1𝑧2 ≡ 𝑧 + 𝜖
(
𝑎𝑧2 + 𝑏𝑧 + 𝑐

)
(5.25)

¤𝑧 = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 (5.26)

The key steps for the integration are highlighted below. Let 𝑟1, 𝑟2 denote the roots of a

quadratic expression 𝑎𝑥2 + 𝑏𝑥 + 𝑐

¤𝑧
(

1
𝑧 + 𝑟1

− 1
𝑧 + 𝑟2

)
=

√︁
𝑏2 − 4𝑎𝑐

ln
(���� 𝑧′ + 𝑟1
𝑧′ + 𝑟2

���� ���� 𝑧 + 𝑟2
𝑧 + 𝑟1

����) =
√︁
𝑏2 − 4𝑎𝑐 𝜖′

𝑧′ + 𝑟1
𝑧′ + 𝑟2

= 𝑘
𝑧 + 𝑟1
𝑧 + 𝑟2

, choose 𝜖′ = ln 𝑘/
√︁
𝑏2 − 4𝑎𝑐

𝑧′ =
𝑧 (𝑟1 − 𝑘𝑟2) + (1 − 𝑘) 𝑟1𝑟2
(𝑘 − 1) 𝑧 + (𝑘𝑟1 − 𝑘𝑟2)

(5.27)

Since 𝑎, 𝑏, 𝑐 were arbitrary, we may choose to start with 𝑎𝑥2 + (𝐴−𝐷)
2 𝑎𝑥 − 𝐵

𝐶
𝑎 and get the

2d finite form of global conformal transformation to be,

𝑧′ =
𝐴𝑧 + 𝐵
𝐶𝑧 + 𝐷 (5.28)

for some arbitrary 𝐴, 𝐵, 𝐶, 𝐷 ∈ C. So, the set of global transformations in 2D (forming a

Special Conformal Group) is given by the functions

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 s.t. 𝑎𝑑 − 𝑏𝑐 = 1 for 𝑎, 𝑏, 𝑐 ∈ Z (5.29)

These are called ‘Projective Transformations’, isomorphic to
(
𝑎 𝑏

𝑐 𝑑

)
∈ 𝑆𝐿(2,C! And 𝑆𝐿(2,C) �

𝑆) (3, 1)! So, the global conformal group in 2D is just a 6-parameter (3 complex) group
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𝑆𝑂 (3, 1). We can adopt another direction to prove this form of global transformation. By

demanding properties 𝑓 (𝑧) must satisfy, thereby restricting it.

1. 𝑓 shouldn’t have any branch point. Because uniqueness shall not hold around it!

Can’t we define branch cuts? Branch cuts essentially reflect the non-isolated nature of

such singularities (branch points). To remove these, we must modify our domain to a

Riemann Surface.

2. 𝑓 shouldn’t have any essential singularities. Holomorphic functions around these

points behave wildly! Casorati-Weirstrass theorem says that, around an essential sin-

gularity, a holomorphic map takes all the values ofC in any arbitrary small neighbour-

hood! These are strictly non-removable since it is not bounded around the singularity.

This implies non-invertibility around that singularity.

3. Since we have already extended our range to the Riemann Sphere, i.e. compactify the

Complex plane by identifying the point at infinity, poles become removable singular-

ities. This means functions with poles are also possible holomorphic functions (such

functions are called meromorphic). We also avoid the isolated removable singularities

so that our function can be defined in one piece.

𝑓 (𝑧) = 𝑃 (𝑧)
𝑄 (𝑧) (5.30)

This is the ratio of polynomials with no common zeroes. Any holomorphic function

with poles being the only singularities is written in the above form.

(a) 𝑃 (𝑧) can’t have multiple zeroes - for invertibility at zero.

(b) If 𝑃 (𝑧) has multiple zero 𝑧0 of order 𝑛 > 1 then the inverse has a branch point.

So,
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5 Conformal Invariance in 2 Dimensions

𝑃(𝑧) = 𝑎𝑧 + 𝑏, 𝑎, 𝑏 ∈ C. (5.31)

4. Q(z)?

(a) Q(z) can’t have multiple zeroes again for the same reason.

(b) Q(z) can’t have zero of order 𝑛 > 1 again.

So, Q(z) = cz + d.

5. 𝑓1 ◦ 𝑓2 = 𝐴1𝐴2. This can be trivially shown.

6. 𝑓1 ◦ 𝑓2(𝑧) = 𝑧 ⇐⇒ 𝐴1𝐴2 =

(
1 0
0 1

)
⇐⇒ | 𝐴1 |≠ 0, | 𝐴2 |≠ 0

⇐⇒ 𝑎1𝑑1 − 𝑏1𝑐1 ≠ 0, 𝑎2𝑑2 − 𝑏2𝑐2 ≠ 0. Thus, we can choose the normalization

𝑎𝑑 − 𝑏𝑐 = 1, since 𝑓 (𝑧) is invariant under overall scaling of 𝑎, 𝑏, 𝑐, 𝑑!

Now that we understand the coordinate transformations, let’s look at how fields behave

under these.

5.2 Primary Fields

We already know how fields behave under the true/global conformal group from the previ-

ous section. But in 2 dimensions, we also have local conformal transformations. Since 𝑙0 + 𝑙0

generates dilations, we expect 𝑙0 + 𝑙0 = −𝑖Δ. It is simpler to consider the spin fields too in

2 dimensions - the representation of Lorentz(spin) algebra is just 𝑆𝜇𝜈 = 𝑠𝜀𝜇𝜈 (in 2d, we just

have a single independent parameter to be generated via the basis of anti-symmetric matri-

ces - thus appears a planar spin). We thus expect 𝑖 (𝑙0 − 𝑙0) = −𝑖 1
2Ω

𝜇𝜈𝑆𝜇𝜈 ≡ 𝑠 (we use the

definition 5.13)
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The 𝑙0, 𝑙0 can be thus deduced from above,

𝑙0 =

(
1
2

(
𝑙0 + 𝑙0

)
− 𝑖2

[
𝑖

(
𝑙0 − 𝑙0

)] )
𝜙

=

(
− 𝑖2Δ − 𝑖2 𝑠

)
= − 𝑖2 (Δ + 𝑠) (5.32)

𝑙0 = − 𝑖2 (Δ − 𝑠) (5.33)

Thus, we are motivated to define the conformal weights,

ℎ =
1
2
(Δ + 𝑠) , ℎ̄ =

1
2
(Δ − 𝑠) (5.34)

1. We note that in 2 dimensions, the scale and spin are placed on an equal footing - cap-

tured in the conformal weights ℎ, ℎ̄, which appear in 𝑙0 and 𝑙0 respectively.

2. These conformal weights allow us to place the above transformations on the same lines

of 4.27. To do this, first note that,

𝑔′𝜇𝜈 (𝑤, �̄�) =
(
𝑑𝑧

𝑑𝑤

) (
𝑑�̄�

𝑑�̄�

)
𝑔𝜇𝜈 (𝑧, �̄�) (5.35)

This tells us that the conformal scaling factors appear decoupled into holomorphic

and anti-holomorphic parts. A straightforward extrapolation of the transformation

law of quasi primaries would include the conformal weight instead of just the scale

dimensions and include both holomorphic and anti-holomorphic contributions, i.e.,

𝜙′(𝑤, �̄�) =
(
𝑑𝑧

𝑑𝑤

)ℎ (
𝑑�̄�

𝑑�̄�

) ℎ̄
𝜙(𝑧, �̄�) (5.36)

Note that in two dimensions, Quasi-Primaries transform as

𝜙′(𝑥′) = Λ(𝑥) Δ2 𝜙(𝑥) (5.37)
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5 Conformal Invariance in 2 Dimensions

So, the holomorphic form of transformation law of Quasi-Primary spin full fields in 2D

is

𝜙′(𝑤, �̄�) =
(
𝑑𝑤

𝑑𝑧

)−ℎ (
𝑑�̄�

𝑑�̄�

)−ℎ̄
𝜙(𝑧, �̄�) (5.38)

Under the general class of transformations 5.31, we now know the behaviour under

the subclass, viz., true conformal group. We generalize the transformation law 5.38 beyond

this subclass to the whole of 5.31. Not all fields may behave in that manner, but the ones

that do, we will call them Primary Fields. That is, Primary fields are those that behave like

5.38 not just under global conformal transformations but also under local ones. These are

generalizations of Quasi-Primaries to local transformations.

Much of the discussion in the 2D CFT revolves around the insights we gain by doing so.

We will use that form as if it’s true for the large class and derive stronger results with weaker

sub-cases for the global transformations, which are the true symmetries. Then, we will phys-

ically link the results obtained. The next few sections will give the results leading up to the

central charge - the conformal anomaly, which captures the breaking of local conformal sym-

metry in the Quantum picture. Also, we call any field that is not primary as secondary.

Note that under infinitesimal transformations𝑤 = 𝑧+𝜖(𝑧), �̄� = �̄�+𝜖( �̄�) transformation

law 5.38 becomes,

𝛿𝜖,𝜖𝜙(𝑧, �̄�) = 𝜙′(𝑧, �̄�) − 𝜙(𝑧, �̄�) (5.39)

= −
(
ℎ𝜙𝜕𝑧 𝜖 + 𝜖𝜕𝑧𝜙

)
−

(
ℎ̄𝜙𝜕𝑍 𝜖 + 𝜖𝜕𝑧𝜙

)
(5.40)

5.3 Holomorphic form of Correlation functions, and Ward
Identities

Let’s rewrite the correlation functions for 2 dimensions in the above form. Recall that if 𝑛 >

4, we can construct conformally invariant cross-ratios. In 2D, with four points 𝑧1, 𝑧2, 𝑧3, 𝑧4
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5 Conformal Invariance in 2 Dimensions

we only have a single independent cross-ratio due to co-planarity.

𝜂 =
𝑧12𝑧34
𝑧13𝑧24

, 1 − 𝜂 = 𝑧14𝑧23
𝑧13𝑧24

,
𝜂

1 − 𝜂 =
𝑧12𝑧34
𝑧14𝑧23

(5.41)

Under (local) conformal transformations, the correlator of primary fields (𝑛 of them) 𝜙𝑖

with conformal dimensions ℎ𝑖 , ℎ̄𝑖 transformations as

⟨𝜙1(𝑤1, 𝑤1), . . . , 𝜙𝑛(𝑤𝑛, �̄�𝑛)⟩ =
∏ (

𝑑𝑤

𝑑𝑧

)−ℎ𝑖
𝑤=𝑤𝑖

(
𝑑�̄�

𝑑�̄�

)−ℎ̄𝑖
�̄�=�̄�𝑖

⟨𝜙1(𝑧1, �̄�1), . . . , 𝜙𝑛(𝑧𝑛, �̄�𝑛)⟩

(5.42)

For rotation invariance, we must have any correlation function to be dependent on (𝑧𝑖𝑗 �̄�𝑖𝑗 )1/2,

so that on the real surface this is just
��𝑧𝑖𝑗 ��.

The holomorphic form of the correlators then is straightforward to write,

⟨𝜙1(𝑧1, �̄�1)𝜙(𝑧2, �̄�2)⟩ =
𝐶12

(𝑧1 − 𝑧2)2ℎ ( �̄�1 − �̄�2)2ℎ̄
(5.43)

⟨𝜙1(𝑧1, �̄�𝑧), 𝜙2(𝑧2, �̄�2), 𝜙3 (𝑧3, �̄�3)⟩ = 𝐶12
1

𝑧
ℎ1+ℎ2−ℎ3
12 𝑧

ℎ2+ℎ3−ℎ1
23 𝑧

ℎ3+ℎ1−ℎ2
13

× 1

�̄�
ℎ̄1+ℎ̄2−ℎ̄3
12 �̄�

ℎ̄2+ℎ̄3−ℎ̄1
23 �̄�

ℎ̄3+ℎ̄1−ℎ̄2
13

(5.44)

⟨𝜙1(𝑧1, �̄�𝑧), 𝜙2(𝑧2, �̄�2), 𝜙3 (𝑧3, �̄�3) , 𝜙4(𝑧4, �̄�4⟩ = 𝑓 (𝜂, �̄�)
4∏
𝑖<𝑗

𝑧
ℎ
3−ℎ𝑖−ℎ𝑗
𝑖𝑗

�̄�
ℎ̄/3−ℎ̄𝑖−ℎ̄𝑗
𝑖𝑗

(5.45)

where, ℎ =
∑
ℎ𝑖 , ℎ̄ =

∑
ℎ̄𝑖 .

The novelty here in 2D is that a non-zero spin is also included (ℎ𝑖 − ℎ̄𝑖)!

The Ward Identities for the conformal invariance (corresponding to translation, rotation

and scaling) are,
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5 Conformal Invariance in 2 Dimensions

𝜕

𝜕𝑥𝜇
⟨𝑇 𝜇𝜈 (𝑥)𝑋 ⟩ = −

𝑛∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)
𝜕

𝜕𝑥𝜈
𝑖

⟨𝑋 ⟩ (5.46)

𝜀 ⟨𝑇 𝜇𝜈 (𝑥)𝑋 ⟩ = −𝑖
𝑛∑︁
𝑖

𝑠𝑖𝛿 (𝑥 − 𝑥𝑖) ⟨𝑋 ⟩ (5.47)

⟨𝑇 𝜇𝜇 (𝑥)𝑋 ⟩ = −
𝑛∑︁
𝑖

𝛿 (𝑥 − 𝑥𝑖)Δ𝑖 ⟨𝑋 ⟩ (5.48)

where we have used the two-dimensional representation of the spin operator 𝑆 .

Classically, 𝑇 𝜇𝜈 is a symmetric and traceless Energy-Momentum Tensor. And in the

Quantum picture, it remains to be so, except at the contact terms. The conservation laws

of the translation, rotation, and scaling can be placed on a connected footing as follows -

which helped us to write the ward identities in terms of the stress tensor.

Symmetry Conservation Law Canonical Current
(obtained via A.35) Modified Current

Translation 𝜕𝜇𝑇
𝜇𝜈 = 0 𝑇

𝜇𝜈
𝑐 𝑇 𝜇𝜈 = 𝑇

𝜇𝜈
𝑐 + 𝜕𝜌𝐵 𝜌𝜇𝜈 + 1

2 𝜕𝜆𝜕𝜌𝑋
𝜆𝜌𝜇𝜈

Rotation 𝜕𝜇𝑗
𝜇𝜈 𝜌 = 0 𝑗

𝜇𝜈 𝜌
𝑐 𝑗 𝜇𝜈 𝜌 = 𝑇 𝜇𝜈𝑥 𝜌 −𝑇 𝜇𝜌𝑥𝜈

Scaling 𝜕𝜇𝑗
𝜇 = 0 𝑗

𝜇
𝑐 𝑗

𝜇

𝐷
= 𝑇

𝜇
𝜈 𝑥

𝜈

Table 5.1: Conserved Currents for different symmetries along with their modified forms in
terms of a symmetric and traceless stress tensor.

We wish to write the above ward identities in holomorphic form. The first step would

be to deduce a delta function that we can integrate over holomorphic or anti-holomorphic

functions.

• Gauss Divergence theorem to convert an integral on C2 to 𝐶 .

• Cauchy’s Theorem for holomorphic or anti-holomorphic functions to get the residue

as the function at 𝑥 = 0 or perhaps hol(x) = 𝑧 = 0.

Claim:

𝛿 (𝑥) = 1
𝜋
𝜕�̄�

1
𝑧
=

1
𝜋
𝜕𝑧

1
�̄�

(5.49)
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The first(second) form can be used for holomorphic (anti) functions. 𝑥 ≡ (𝑧, �̄�).

Proof:

Note that:
∫
𝑀⊂C2 𝑑

2𝑥𝜕𝜇𝐹
𝜇 =

∫
𝜕𝑀

𝑑𝜉𝜇𝐹
𝜇 for a vector 𝐹 𝜇.

Here, 𝑑𝜉𝜇 = 𝜀𝜇𝜌𝑑𝑠 𝜌 is the outward directed differential.

So,

∫
𝑀

𝑑2𝑥𝜕𝜇𝐹
𝜇 =

∫
𝜕𝑀

𝑑𝑧𝜀�̄� 𝑧𝐹
�̄� + 𝑑�̄�𝜀𝑧 �̄�𝐹 𝑧

=
1
2 𝑖

∫
𝜕𝑀

{
−𝑑𝑧𝐹 �̄� + 𝑑�̄�𝐹 𝑧

}
(5.50)

Now this is ripe for Cauchy’s Theorem -

∫
𝑀

𝑑2𝑥𝛿 (𝑥) 𝑓 (𝑧) = 1
𝜋

∫
𝑀

𝑑2𝑥 𝑓 (𝑧)𝜕�̄�
1
𝑧

=
1
𝜋

∫
𝑀

𝑑2𝑥𝜕�̄�

(
𝑓 (𝑧)
𝑧

)
=

1
2𝜋 𝑖

∮
𝜕𝑀

𝑑𝑧
𝑓 (𝑧)
𝑧

= 𝑓 (0) (5.51)

This is actually brilliant! Basically, the derivative w.r.t the anti-holomorphic coordinate

allows us to convert the integral into an integral of the divergence of a holomorphic function

- which then becomes a contour integral due to Gauss’ Theorem and leaves out a residue

due to Cauchy’s. Similarly, we have the other case - integrating over an anti-holomorphic

function 𝑓 ( �̄�) gives 𝑓 (0).

Using this in the Cartesian ward identities and expanding out the tensor transformation

law, for a change of variables - (𝑥0, 𝑥1) →
(
𝑥′0, 𝑥′1

)
≡ (𝑧 = 𝑥0 + 𝑖𝑥1, �̄� = 𝑥0 − 𝑖𝑥1) gives the

holomorphic form of ward identities,
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2𝜋𝜕𝑧 ⟨𝑇�̄� 𝑧𝑋 ⟩ + 2𝜋𝜕�̄� ⟨𝑇𝑧𝑧𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝜕�̄�

1
𝑧 − 𝑤𝑖

𝜕𝑤𝑖 ⟨𝑋 ⟩ (5.52)

2𝜋𝜕𝑧 ⟨𝑇�̄� �̄�𝑋 ⟩ + 2𝜋𝜕�̄� ⟨𝑇𝑧 �̄�𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝜕𝑧

1
�̄� − �̄�𝑖

𝜕�̄�𝑖 ⟨𝑋 ⟩ (5.53)

2 ⟨𝑇𝑧 �̄�𝑋 ⟩ + 2 ⟨𝑇�̄� 𝑧𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝛿 (𝑥 − 𝑥𝑖)Δ𝑖 ⟨𝑋 ⟩ (5.54)

−2 ⟨𝑇𝑧 �̄�𝑋 ⟩ + 2 ⟨𝑇�̄� 𝑧𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝛿 (𝑥 − 𝑥𝑖) 𝑠𝑖 ⟨𝑋 ⟩ (5.55)

Add and subtract the last two equations to get,

2𝜋 ⟨𝑇�̄� 𝑧𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝜕�̄�

1
𝑧 − 𝑤𝑖

ℎ𝑖 ⟨𝑋 ⟩ (5.56)

2𝜋 ⟨𝑇𝑧 �̄�𝑋 ⟩ = −
𝑛∑︁
𝑖=1
𝜕𝑧

1
�̄� − �̄�𝑖

ℎ̄𝑖 ⟨𝑋 ⟩ (5.57)

Subbing these in the first two equations gives,

𝜕�̄�

{
⟨𝑇 (𝑧, �̄�)𝑋 ⟩ −

𝑛∑︁
𝑖=1

[
1

𝑧 − 𝑤1
𝜕𝑤𝑖 ⟨𝑋 ⟩ + ℎ𝑖

(𝑧 − 𝑤𝑖)2 ⟨𝑋 ⟩
]}

= 0 (5.58)

𝜕𝑧

{
⟨�̄� (𝑧, �̄�)𝑋 ⟩ −

𝑛∑︁
𝑖=1

[
1

�̄� − �̄�1
𝜕�̄�𝑖 ⟨𝑋 ⟩ + ℎ̄𝑖

( �̄� − �̄�𝑖)2 ⟨𝑋 ⟩
]}

= 0 (5.59)

Where,𝑇 = −2𝜋𝑇𝑧𝑧 , �̄� = −2𝜋𝑇�̄� �̄� .

So we have a holomorphic (anti) condition on the function in equation 5.58 (5.59).To

avoid any additional singular terms in the stress tensor apart from those which appear in the

ward identities 5.52-5.55, the above functions must be regular at 𝑧 = 𝑤𝑖

That is, the stress tensor is determined within correlation functions up to regular terms

(at contact points) as follows -

⟨𝑇 (𝑧)𝑋 ⟩ =
𝑛∑︁
𝑤=1

{
1

𝑧 − 𝑤𝑖
𝜕𝑤𝑖 ⟨𝑋 ⟩ + ℎ𝑖

(𝑧 − 𝑤𝑖)2 ⟨𝑋 ⟩
}
+ 𝑟𝑒 𝑔. (5.60)

104
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Similarly, for the anti-holomorphic part of the stress tensor.

Note that the mixed components𝑇𝑧 �̄� , 𝑇�̄�,𝑧 as given by 5.56,5.57 are just 𝛿 functions ready

to act on some holomorphic or anti-holomorphic functions and spitting out its details near

contract terms.

Note that ward identities make sense only as distributions irrespective of cartesian/holomorphic

forms.

What we have done so far doesn’t talk to the local transformations yet. Since all we have

done is rewrite the global ward identities in 2 dimensions, including spin. ℎ, ℎ̄ appear due to

a non-zero spin.

5.3.1 Conformal Ward Identity

There is a slick way to derive a ward identity that actually talks to the ’local transformations’!

First, note that,

𝜕𝜇 (𝜖𝜈𝑇 𝜇𝜈) = 𝜖𝜈𝜕𝜇𝑇 𝜇𝜈 +
1
2

(
𝜕𝜌𝜖

𝜌
)
𝜂𝜇𝜈𝑇

𝜇𝜈 + 1
2 𝜀

𝛼𝛽𝜕𝛼𝜖𝛽 𝜀𝜇𝜈𝑇
𝜇𝜈 (5.61)

This is because,

1
2

(
𝜕𝜇𝜖𝜈 + 𝜕𝜈 𝜖𝜇

)
=

1
2 (𝜕𝜌𝜖

𝜌)𝜂𝜇𝜈 (5.62)
1
2

(
𝜕𝜇𝜖𝜈 − 𝜕𝜈 𝜖𝜇

)
=

1
2 𝜀

𝛼𝛽𝜕𝛼𝜖𝛽 𝜀𝜇𝜈 (5.63)

the first one is due to conformal transformations, and the second is just identity.

Using this within the correlation function, integrating and using the ward identities for

scaling, translation, and rotation gives,
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∫
𝑑2𝑥 ⟨𝜕𝜇 [𝜖𝜈𝑇 𝜇𝜈] 𝑋 ⟩ =

∫
𝑑2𝑥

{
𝜖𝜈 ⟨𝜕𝜇𝑇 𝜇𝜈⟩ +

1
2 𝜕 · 𝜖 ⟨𝑇

𝜇
𝜇 ⟩ +

1
2 𝜀

𝛼𝛽𝜕𝛼𝜖𝛽 ⟨𝜀𝜇𝜈𝑇 𝜇𝜈𝑋 ⟩
}

(5.64)

= −
𝑛∑︁
𝑖=1

∫
𝑑2𝑥𝛿 (𝑥 − 𝑥𝑖)

{
𝜖𝜈𝜕𝑖𝜈 +

1
2 𝜕 · 𝜖Δ𝑖 +

𝑖

2 𝜀
𝛼𝛽𝜕𝛼𝜖𝛽 𝑠𝑖

}
⟨𝑋 ⟩

(5.65)

= −
𝑛∑︁
𝑖=1

∫
𝑑2𝑥𝛿 (𝑥 − 𝑥𝑖)

{
𝜖𝜕𝑖 + ℎ𝑖𝜕𝜖 + 𝑒𝜖𝜕𝑖 + ℎ̄𝑖𝜕𝜖

}
⟨𝑋 ⟩ (5.66)

We recognize that r.h.s of above equation is just 𝛿𝜖𝜖 ⟨𝑋 ⟩From equation 5.39.

So,

𝛿𝜖𝜖 ⟨𝑋 ⟩ =
∫
𝑀

𝑑2𝑥𝜕𝜇 ⟨𝑇 𝜇𝜈 (𝑥)𝜖𝜈 (𝑥)𝑋 ⟩ (5.67)

Now, use the Gauss’ Law with 𝐹 𝜇 = ⟨𝑇 𝜇𝜈 (𝑥)𝜖𝜈 (𝑥)𝑋 ⟩

𝛿𝜖𝜖 ⟨𝑋 ⟩ = 1
2 𝑖

∫
𝐶

{
−𝑑𝑧 ⟨𝑇 �̄� �̄� 𝜖�̄�𝑋 ⟩ + 𝑑�̄� ⟨𝑇 𝑧𝑧 𝜖𝑧𝑋 ⟩ −�������

𝑑𝑠 ⟨𝑇 �̄� 𝑧 𝜖𝑧𝑋 ⟩ +(((((((
𝑑�̄� ⟨𝑇 𝑧 �̄� 𝜖�̄�𝑋 ⟩

}
(5.68)

We have 𝑇 �̄� 𝑧 = 𝑇𝑧 �̄� and 𝑇 𝑧 �̄� = 𝑇�̄� 𝑧 which are basically 𝛿 functions appearing in the

integrals over the wrong variables, which makes both the terms vanish!

Thus we have the Conformal Ward Identity (integral form) as

𝛿𝜖𝜖 ⟨𝑋 ⟩ = − 1
2𝜋 𝑖

∮
𝐶

𝑑𝑧𝜖(𝑧) ⟨𝑇 (𝑧)𝑋 ⟩ + 1
2𝜋 𝑖

∮
𝐶

𝑑�̄�𝜖( �̄�) ⟨�̄� ( �̄�)𝑋 ⟩ (5.69)

This is just the holomorphic form of the Ward Identities for Quasi-Primary Fields in a

compact form!

Some key results about the conformal ward identity -

1. Indeed, the local transformation law of primary fields can be reproduced.
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2. For global transformations, this gives 𝛿𝜖𝜖 = 0 as it should be! The infinitesimal form

of the projective transformation is

𝑓 (𝑧) =
(1 + 𝛼) 𝑧 + 𝛽
𝛾 𝑧 + (1 − 𝛼) (5.70)

𝜖(𝑧) = 𝛽 + 2𝛼𝑧 − 𝛾 𝑧2 + . . . (5.71)

The R.H.S of 5.69 should vanish for above 𝜖(𝑧). Then, R.H.S of equation 5.66

should vanish, giving the following relations on correlators of Primary fields,∑︁
𝑖

𝜕𝑤𝑖
〈
𝜙1 (𝑤1) · · · 𝜙𝑛 (𝑤𝑛)

〉
= 0 (5.72)∑︁

𝑖

(
𝑤𝑖𝜕𝑤𝑖 + ℎ𝑖

) 〈
𝜙1 (𝑤1) · · · 𝜙𝑛 (𝑤𝑛)

〉
= 0 (5.73)∑︁

𝑖

(
𝑤2
𝑖 𝜕𝑤𝑖 + 2𝑤𝑖ℎ𝑖

) 〈
𝜙1 (𝑤1) · · · 𝜙𝑛 (𝑤𝑛)

〉
= 0 (5.74)

The correlation functions 5.42 satisfy the above relations! And in fact, there’s an ⇐⇒

relation between the form of correlation functions and the above relations.

We note the following important steps -

1. The Global sub-algebra is captured in Witt Algebra - which is the local conformal alge-

bra. Any calculation done using local algebra is also valid on the global algebra. So we

just do that and aim to see if we can get anything more than the global algebra results.

2. The Ward Identities of Global Symmetry is captured in Conformal Ward Identity -

which we will take to be valid for all the fields. Note that we haven’t used anywhere

that the local transformations are symmetries. However, we have derived the identity

using the transformation law of quasi-primary fields. We could extend this to all the

fields satisfying the same transformation law (under local transformations), i.e. Pri-

mary fields. However, this identity is generally regarded as the definition of the effect

of local conformal transformations of any field. Let’s see what we get by doing so!
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So, the conformal ward identity tells us the effect of local conformal symmetry (since we

assumed it to be valid for primary fields, too). It also fixes the form of correlation functions

via global transformations.

5.3.2 Behavior of T(z):

We want the energy-momentum tensor to be well defined everywhere =⇒ 𝑇 (0) should be

finite.

Claim: 𝑇 (𝑧) should decay as 𝑧−4 as 𝑧 → ∞.

Proof 1: EM Tensor has scaling dimension 2, and spin dimension as 2 =⇒ ℎ = 2, ℎ̄ = 2.

Under 𝑧 → 𝑤 = 1
𝑧

(a global conformal transformation),

𝑇 ′(𝑤) = 𝑑𝑤
𝑑𝑧

−2
𝑇 (𝑧) = 𝑧4𝑇 (𝑧)

So we must have as 𝑧 → ∞,𝑇 (𝑧) → 𝑧−4 So that𝑇 ′( 1
𝑧
) is finite.

Proof 2: Consider 𝛿𝜖 ⟨1⟩ which must vanish under Global Conformal transformation,

=⇒ − 1
2𝜋 𝑖

∮
𝐶

𝑑𝑧𝜖(𝑧) ⟨𝑇 (𝑧)⟩ = 0

Since 𝜖(𝑧) is quadratic for SCTs, and the above relation should be true for the contour

circling infinity, 𝑇 (𝑧) must behave as 𝑧−4 near infinity if no reside to be picked up, so that∮
= 0!

5.4 Operator Product Expansions

Inspired by computations in the last section (and probably many more such calculations), we

represent the product of operators within the correlation functions by a sum expansion with

each term consisting of 𝑐-number function of 𝑧 −𝑤, which may diverge at 𝑧 = 𝑤 multiplied

to an operator which is non-singular at 𝑧 = 𝑤.
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Note that the divergences in the correlation function at the contact terms reflect the in-

finite fluctuation of quantum fields at a precise position. Even the average of a field over a

point diverges, too. [ 𝜙𝑎𝑣. = 1
𝑉

∫
𝑉
𝑑2𝑥𝜙(𝑥) diverges as𝑉 → ∞.]

Recall equation 5.59. This is a form of the expansions we are talking about. For a single

primary field 𝜙(𝑥), this becomes,

𝑇 (𝑧)𝜙(𝑤, �̄�) ∼ ℎ

(𝑧 − 𝑤)2 𝜙(𝑤, �̄�) +
1

(𝑧 − 𝑤) 𝜕𝑤𝜙(𝑤, �̄�) (5.75)

similarly, the expansion for the product with the anti-holomorphic component of the stress

tensor. This expansion is valid up to regular terms. (Since Ward Identities do not fix the

regular terms.)

In general, we write the OPE of two fields 𝐴(𝑧)𝐵 (𝑤) as

𝐴(𝑧)𝐵 (𝑤) ∼
𝑁∑︁

𝑛=−∞

{𝐴𝐵}𝑛 (𝑤)
(𝑧 − 𝑤)𝑛 (5.76)

where the composite fields {𝐴𝐵}𝑛 (𝑤) are non-singular at 𝑤 = 𝑧. For e.g.
{
𝑇 𝜙

}
=

𝜕𝑤𝜙(𝑤).

Actually, these are just fields as of now - Operator Formalism will come soon, and we

will use all this over there. (Next Chapter). We are thus now aware of the operator product

structure (between a stress tensor and a primary field of conformal dimension (ℎ, ℎ̄))within a

correlation function for an arbitrary 2d CFT. Let’s see this in a few basic examples admitting

scale invariance (thus assumed to be conformally invariant) theories.

Also, note that we never actually derived the scaling ward identity valid for 2d; we just

assumed the same 𝑑 > 2 one is also valid here. There is a way to derive the ward identity

specifically for 2D.

5.4.1 The Free Boson

Start with the simplest CFT - free, massless, scalar boson 𝜙.
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5 Conformal Invariance in 2 Dimensions

𝑆 =
1
2 𝑔

∫
𝑑2𝑥𝜕𝜇𝜙𝜕

𝜇𝜙 (5.77)

where 𝑔 is the normalization parameter.

Let’s first note the procedure for computing the correlation functions in the language of

Path Integrals. Assume the theory to be massive. The action can be written as follows,

𝑆 =
1
2

∫
𝑑2𝑥𝑑2𝑦𝜙(𝑥)𝐴(𝑥, 𝑦)𝜙(𝑦) (5.78)

with 𝐴(𝑥, 𝑦) = 𝑔𝛿 (𝑥 − 𝑦)
(
𝜕2 +𝑚2) . This follows from a continuous generalization of

the calculation of moments using Gaussian Integrals.

Then, the 2-point correlator is given by ⟨𝜙(𝑥)𝜙(𝑦)⟩ ≡ 𝐾 (𝑥, 𝑦) = 𝐴−1(𝑥, 𝑦). This can

be rewritten as 𝑔 (−𝜕2
𝑥 + 𝑚2)𝐾 (𝑥, 𝑦) = 𝛿 (𝑥 − 𝑦). This is just the Green function for the

equation of motion. [We are already familiar with correlation functions being just the green

functions of the EOM!]

Rotation and Translation Invariance allow us to directly write 𝐾 (𝑥, 𝑦) = 𝐾 (
��𝑥 − 𝑦��) ≡

𝐾 (𝑟). Integrating the above gives,

1 = 2𝜋 𝑔
∫ 𝑟

0
𝑑𝜌𝜌

(
−1
𝜌

𝜕

𝜕 𝜌
( 𝜌𝐾 ′( 𝜌)) +𝑚2𝐾 ( 𝜌)

)
= 2𝜋 𝑔

{
−𝑟𝐾 ′(𝑟) +𝑚2

∫ 𝑟

0
𝑑𝜌𝜌𝐾 ( 𝜌)

}
(5.79)

For𝑚 = 0, this gives 𝐾 (𝑟) = − 1
2𝜋 𝑔 ln 𝑟 -

⟨𝜙(𝑥)𝜙(𝑦)⟩ = − 1
4𝜋 𝑔 ln(𝑥 − 𝑦)2 + 𝑐𝑜𝑛𝑠𝑡 . (5.80)

And for𝑚 ≠ 0, differentiate equation 5.79 to get the modified Bessel Equation -

𝐾 ′′(𝑟) + 1
𝑟
𝐾 ′(𝑟) −𝑚2𝐾 (𝑟) = 0 (5.81)
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We are interested in the solutions of the above equations that decay near infinity; this

allows us to write,

𝐾 (𝑟) = 1
2𝜋 𝑔 𝐾◦(𝑚𝑟) (5.82)

where,

𝐾◦(𝑥) =
∫ ∞

0
𝑑𝑡

cos 𝑥𝑡
𝑡2 + 1

; (𝑥 > 0) (5.83)

At large 𝑟, (𝑚𝑟 ≫ 1) 𝐾 (𝑟) ∼ 𝑒−𝑚𝑟 which is a generic feature of a massive field’s corre-

lation functions to decay over the characteristic length or the correlation length of 1
𝑚

. This

scale enters into the theory, making massive theories not scale invariant!

In holomorphic coordinates,

⟨𝜙(𝑧, �̄�)𝜙(𝑤, �̄�)⟩ = − 1
4𝜋 𝑔

{ln(𝑧 − 𝑤) + ln( �̄� − �̄�)} + 𝑐𝑜𝑛𝑠𝑡 . (5.84)

Which gives,

⟨𝜕𝑧𝜙(𝑧, �̄�)𝜕𝑤𝜙(𝑤, �̄�)⟩ = − 1
4𝜋 𝑔

1
(𝑧 − 𝑤)2 (5.85)

⟨𝜕�̄�𝜙(𝑧, �̄�)𝜕�̄�𝜙(𝑤, �̄�)⟩ = − 1
4𝜋 𝑔

1
( �̄� − �̄�)2 (5.86)

(5.87)

Let’s focus on the holomorphic part of the above,

𝜕𝜙(𝑧)𝜕𝜙(𝑤) ∼= 1
4𝜋 𝑔

1
(𝑧 − 𝑤)2 (5.88)

Recall that,𝑇𝜇𝜈 = 𝑔
(
𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2𝜂𝜇𝜈𝜕𝜌𝜙𝜕
𝜌𝜙

)
,

So, in complex coordinates, according to discussion around 5.57 -
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𝑇 (𝑧) = −2𝜋 𝑔 : 𝜕𝜙𝜕𝜙 : (5.89)

We have also gone ahead and normal ordered it for a vanishing expectation value in the

ground state. Normal ordering can be achieved via the following regularization procedure,

𝑇 (𝑧) = −2𝜋 𝑔 lim
𝑤→𝑧

(
𝜕𝜙(𝑧)𝜕𝜙(𝑤) − ⟨𝜕𝜙(𝑧)𝜕𝜙(𝑤)⟩

)
(5.90)

𝑇 (𝑧)𝜕𝜙(𝑤) = −4𝜋 𝑔 : 𝜕𝜙(𝑧)𝜕𝜙(𝑧) : 𝜕𝜙(𝑤)

=
𝜕𝜙(𝑧)

(𝑧 − 𝑤)2

Expanding 𝜕𝜙(𝑧) around 𝑧 = 𝑤 gives,

𝑇 (𝑧)𝜕𝜙(𝑤) ∼
𝜕𝜙(𝑤)
(𝑧 − 𝑤)2 +

𝜕2
𝑤𝜙(𝑤)
(𝑧 − 𝑤) (5.91)

Compare this with equation 5.75 to conclude that 𝜕𝜙 is a primary field with conformal

dimension ℎ = 1!

Note the OPE between two (holomorphic) stress tensors.

𝑇 (𝑧)𝑇 (𝑤) = 4𝜋2 𝑔2 : 𝜕𝜙(𝑧)𝜕𝜙(𝑧) :: 𝜕𝜙(𝑤)𝜕𝜙(𝑤) : 𝑛

=

1
2

(𝑧 − 𝑤)4 −
4𝜋 𝑔 : 𝜕𝜙(𝑧)𝜕𝜙(𝑤) :

(𝑧 − 𝑤)2

∼
1
2

(𝑧 − 𝑤)4 + 2𝑇 (𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)

(𝑧 − 𝑤) (5.92)

We see that 𝑇 (𝑧) is not a primary field with conformal dimension ℎ = 2. There’s an

anomalous term proportional to 1
(𝑧−𝑤)4 !

112



5 Conformal Invariance in 2 Dimensions

5.4.2 The Free Fermion

The two-dimensional Euclidean action for a free Majorana fermion is,

𝑆 =
1
2 𝑔

∫
𝑑2𝑥Ψ†𝛾0𝛾 𝜇𝜕𝜇Ψ (5.93)

where 𝛾 𝜇 are the representations of Clifford algebra {𝛾 𝜇, 𝛾 𝜈} = 2𝜂𝜇𝜈 . We use the repre-

sentation

𝛾0 =

(
0 1
1 0

)
, 𝛾1 = 𝑖

(
0 −1
1 0

)
(5.94)

for 𝜂𝜇𝜈 = 𝑑𝑖𝑎 𝑔 (1, 1). Note that there is no usual 𝑖 in the action because we have used

𝑡 → −𝑖𝑡 , and the 𝑖 in 𝛾1 also reflects the Euclidean representation.

So,

𝛾0
(
𝛾0𝜕0 + 𝛾1𝜕1

)
= 2

(
𝜕�̄� 0
0 𝜕𝑧

)
(5.95)

Expanding the action by writing the two-component spinor Ψ ≡
(
𝜓

𝜓

)
,Ψ† ≡

(
𝜓 𝜓

)
gives,

𝑆 = 𝑔

∫
𝑑2𝑥 (𝜓 𝜕𝜓 + 𝜓 𝜕𝜓 ) (5.96)

Note that the equations of motion are - 𝜕𝜓 = 0, 𝜕𝜓 = 0 whose solutions are just holo-

morphic and anti-holomorhpic functions 𝜓 ( �̄�), 𝜓 (𝑧). Now, as before, one can rewrite the

action as (so that we can make use of the Gaussian Integrals while calculating the correlation

functions) -

𝑆 =
1
2

∫
𝑑2𝑥𝑑2𝑦Ψ𝑖 (𝑥)𝐴𝑖𝑗 (𝑥, 𝑦)Ψ𝑗 (𝑦) (5.97)

where, 𝐴𝑖𝑗 (𝑥, 𝑦) = 𝑔𝛿 (𝑥 − 𝑦)
(
𝛾0𝛾 𝜇

)
𝑖𝑗
𝜕𝜇.
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Then the two-point function is given by,

𝐾𝑖𝑗 (𝑥, 𝑦) = 𝐴−1
𝑖𝑗 (𝑥, 𝑦) (5.98)

or,

𝑔

(
𝛾0𝛾 𝜇

)
𝑖𝑘

𝜕

𝜕𝑥𝜇
𝐾𝑘𝑗 (𝑥, 𝑦) = 𝛿 (𝑥 − 𝑦)𝛿𝑖𝑗 (5.99)

which gives,

2𝑔
(
𝜕�̄� 0
0 𝜕𝑧

) (
⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩ ⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩
⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩ ⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩

)
=

1
𝜋

(
𝜕�̄�

1
𝑧−𝑤 0
0 𝜕𝑧

1
�̄�−�̄�

)
(5.100)

⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩ = 1
2𝜋 𝑔

1
𝑧 − 𝑤 (5.101)

⟨𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)⟩ = 1
2𝜋 𝑔

1
�̄� − �̄� (5.102)

⟨𝜓 (𝑧, �̄�) 𝜓 (𝑤, �̄�)⟩ = 0 (5.103)

This further gives,

〈
𝜕𝑧𝜓 (𝑧, �̄�)𝜓 (𝑤, �̄�)

〉
= − 1

2𝜋 𝑔
1

(𝑧 − 𝑤)2 (5.104)〈
𝜕𝑧𝜓 (𝑧, �̄�)𝜕𝑤𝜓 (𝑤, �̄�)

〉
= − 1

𝜋 𝑔

1
(𝑧 − 𝑤)3 (5.105)

Let’s calculate the stress tensor as -

𝑇 �̄� �̄� = 2 𝜕L
𝜕𝜕Φ

𝜕Φ = 2𝑔𝜓 𝜕𝜓 (5.106)

𝑇 𝑧𝑧 = 2 𝜕L
𝜕𝜕Φ

𝜕Φ = 2𝑔𝜓 𝜕𝜓 (5.107)

𝑇 𝑧 �̄� = 2 𝜕L
𝜕𝜕Φ

𝜕Φ − 2L = −2𝑔𝜓 𝜕𝜓 (5.108)
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Note that the stress tensor is symmetric on-shell. A modification into an identically sym-

metric form doesn’t change the Ward Identities, so we need not modify!

𝑇 (𝑧) = −2𝜋𝑇𝑧𝑧

= −𝜋 𝑔 : 𝜓 (𝑧)𝜕𝜓 (𝑧) : (5.109)

= −𝜋 𝑔 lim
𝑤→𝑧

(
𝜓 (𝑧)𝜕𝜓 (𝑤) − ⟨𝜓 (𝑧)𝜕𝜓 (𝑤)⟩

)
(5.110)

Then,

𝑇 (𝑧)𝜓 (𝑤) = −𝜋 𝑔 : 𝜓 (𝑧)𝜕𝜓 (𝑧) : 𝜓 (𝑤) (5.111)

∼ 1
2
𝜕𝜓 (𝑧)
𝑧 − 𝑤 + 1

2
𝜓 (𝑧)

(𝑧 − 𝑤)2 (5.112)

∼
1
2𝜓 (𝑤)
(𝑧 − 𝑤)2 +

𝜕𝜓 (𝑤)
𝑧 − 𝑤 (5.113)

So fermion field 𝜓 is a primary field with conformal dimension ℎ = 1
2 !

And

𝑇 (𝑧)𝑇 (𝑤) = 𝜋2 𝑔2 : 𝜓 (𝑧)𝜕𝜓 (𝑧) :: 𝜓 (𝑤)𝜕𝜓 (𝑤) : (5.114)

∼ 1/4
(𝑧 − 𝑤)4 + 2𝑇 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)
(𝑧 − 𝑤) (5.115)

We see that the stress tensor is again not a primary field with ℎ = 2, and the OPE con-

tains the same anomalous term as that of free Boson, but with a different numerical factor.

5.4.3 The Ghost System

𝑆 =
1
2 𝑔

∫
𝑑2𝑥𝑏𝜇𝜈𝜕

𝜇𝑐𝜈 (5.116)
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The fields 𝑏, 𝑐 are not fundamental dynamical fields. This system appears as a Jacobian

in some functional integrals of string theoretic applications. Thee fields 𝑏, 𝑐 are called (re-

parametrization) ghosts. Also, 𝑏𝜇𝜈 is traceless, symmetric and anti-commuting in nature with

the field 𝑐𝜈 .

The equations of motion can be straightforwardly seen to be -

𝜕 𝛼𝑏𝛼𝜇 = 0, 𝜕 𝛼𝑐 𝛽 + 𝜕 𝛽𝑐 𝛼 = 0 (5.117)

In holomorphic coordinates, letting 𝑏𝑧𝑧 = 𝑏, 𝑏 �̄� �̄� = 𝑏 (other components vanish in holo-

morphic form), the above equations take the following form -

𝜕𝑏 = 0, 𝜕𝑏 = 0 (5.118)

𝜕𝑐 = 0, 𝜕 𝑐 = 0, 𝜕 𝑐 = −𝜕𝑐 (5.119)

We rewrite the action in a form that’s ripe for the use of Gaussian Integrals as -

𝑆 =
1
2

∫
𝑑2𝑥𝑑2𝑦𝑏𝜇𝜈 (𝑥)𝐴

𝜇𝜈
𝛼 (𝑥, 𝑦)𝑐 𝛼 (𝑦) (5.120)

with 𝐴𝜇𝜈𝛼 (𝑥, 𝑦) = 1
2 𝑔𝛿

𝜈
𝛼𝛿 (𝑥 − 𝑦)𝜕 𝜇. The propagator is then just given by 𝐾 = 𝐴−1 -

1
2 𝑔𝛿

𝜇
𝛼 𝜕

𝜈𝐾
𝛽
𝜇𝜈 (𝑥, 𝑦) = 𝛿 (𝑥 − 𝑦)𝛿𝛼𝛽 (5.121)

and in holomorphic form, this is -

𝑔𝜕�̄�𝐾
𝛽
𝑧𝑧 =

1
𝜋
𝜕�̄�

1
𝑧 − 𝑤 𝛿𝛽𝑧 (5.122)

which gives
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⟨𝑏(𝑧)𝑐 (𝑤)⟩ = 𝐾 𝑧
𝑧𝑧 (𝑧, 𝑤) =

1
𝜋 𝑔

1
𝑧 − 𝑤 (5.123)

we thus have the following OPEs,

𝑏(𝑧)𝑐 (𝑤) ∼ 1
𝜋 𝑔

1
𝑧 − 𝑤 (5.124)

𝑐 (𝑧)𝑏(𝑤) ∼ 1
𝜋 𝑔

1
(𝑧 − 𝑤) (5.125)

𝑏(𝑧)𝜕𝑐 (𝑤) ∼ − 1
𝜋 𝑔

1
(𝑧 − 𝑤)2 (5.126)

𝜕𝑏(𝑧)𝑐 (𝑤) ∼ 1
𝜋 𝑔

1
(𝑧 − 𝑤)2 (5.127)

(5.128)

We are, as usual, interested in the stress tensor; the canonical one is

𝑇
𝜇𝜈
𝑐 =

1
2 𝑔

(
𝑏𝜇𝛼𝜕 𝜈 𝑐𝛼 − 𝜂𝜇𝜈𝑏𝛼𝛽𝜕𝛼𝑐𝛽

)
(5.129)

but this needs modification since it’s not symmetric. The modified tensor is

𝑇
𝜇𝜈

𝐵
=

1
2 𝑔

{
𝑏𝜇𝛼𝜕 𝜈 𝑐𝛼 + 𝑏𝜈𝛼𝜕 𝜇𝑐𝛼 + 𝜕𝛼𝑏𝜇𝜈 𝑐 𝛼 − 𝜂𝜇𝜈𝑏𝛼𝛽𝜕𝛼𝑐𝛽

}
(5.130)

From which we write,

𝑇 (𝑧) = 𝜋 𝑔 : (2𝜕𝑐𝑏 + 𝑐𝜕𝑏) : (5.131)

and we then get, using Wick’s theorem
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5 Conformal Invariance in 2 Dimensions

𝑇 (𝑧)𝑏(𝑤) ∼ 2𝑏(𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑤𝑏(𝑤)

𝑧 − 𝑤 (5.132)

𝑇 (𝑧)𝑐 (𝑤) ∼ − −𝑐 (𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑤 𝑐 (𝑤)(𝑧 − 𝑤) (5.133)

𝑇 (𝑧)𝑇 (𝑤) ∼ −13
(𝑧 − 𝑤)4 + 2𝑇 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)
(𝑧 − 𝑤) (5.134)

We note that the fields 𝑏, 𝑐 are primary with conformal dimensions ℎ = 2 and ℎ = −1,

respectively. Once again, we see that𝑇 (𝑤) is not a primary field and contains an anomalous

term with a different numerical factor!

We obtain the so-called simple ghost system by subtracting the total derivative : 𝜕 (𝑐𝑏) :

from𝑇 (𝑧) (and not changing any OPE between 𝑏 and 𝑐).

Consider the modified theory as follows,

𝑇 (𝑧) = 𝜋 𝑔 : 𝜕𝑐𝑏 : (5.135)

The new OPEs are,

𝑇 (𝑧)𝑐 (𝑤) ∼ 𝜕𝑐

𝑧 − 𝑤 (5.136)

𝑇 (𝑧)𝑏(𝑤) ∼ 𝑏(𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑏(𝑤)

𝑧 − 𝑤 (5.137)

𝑇 (𝑧)𝑇 (𝑤) ∼ −1
(𝑧 − 𝑤)2 + 2𝑇 (𝑤)

(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)
𝑧 − 𝑤 (5.138)

We now have the conformal dimensions for 𝑏 and 𝑐 as ℎ = 1 and ℎ = 0, respectively. The

numerical factor of the anomalous term in the OPE of𝑇 has changed, too.
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5.5 The Central Charge and the transformation of En-
ergy Momentum Tensor

From the above calculations, we are motivated to write the following general OPE of𝑇 with

itself,

𝑇 (𝑧)𝑇 (𝑤) ∼
𝑐
2

(𝑧 − 𝑤)2 + 2𝑇 (𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)

𝑧 − 𝑤 (5.139)

• Here 𝑐, the central charge or conformal anomaly is a model dependent constant which

can’t be determined just by symmetric considerations, and requires short-distance be-

havior of the theory!

• Talking about the short-distance behaviour, note that we can deduce the (𝑧 − 𝑤)−4

behaviour from the Schwinger function ⟨𝑇 (𝑧)𝑇 (0)⟩ =
𝑐
2
𝑧4 after letting 𝐴 = 𝑐

4𝜋2 in

equation 4.80.

• Scale invariance and Bose symmetry make 𝑐𝑜𝑛𝑠𝑡 ./(𝑧 − 𝑤)4 the only sensible addition

to OPE!

• This also measures the number of d.o.f of the system since the stress tensors of de-

coupled systems just add up, resulting in a central charge, which is the sum of each

decoupled system. This can also be noted via the Zamolodchikov c-theorem.

So, the lesson is that𝑇 (𝑧) is not a primary field. Using the conformal Ward identity,

𝛿𝜖𝑇 (𝑤) = − 1
2𝜋 𝑖

∮
𝑐

𝑑𝑧𝜖(𝑧)𝑇 (𝑧)𝑇 (𝑤) (5.140)

= − 1
12 𝑐𝜕

3
𝑤 𝜖(𝑤) − 2𝑇 (𝑤)𝜕𝑤 𝜖(𝑤) − 𝜖(𝑤)𝜕𝑤𝑇 (𝑤) (5.141)

Exponentiating this yields
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5 Conformal Invariance in 2 Dimensions

𝑇 ′(𝑤) =
(
𝑑𝑤

𝑑𝑧

)−2 [
𝑇 (𝑧) − 𝑐

12
{𝑤; 𝑧}

]
(5.142)

where, {𝑤; 𝑧} is the Schwarzian derivative given by,

{𝑤; 𝑧} = 𝑑
3𝑤/𝑑𝑧3

𝑑𝑤/𝑑𝑧 − 3
2

(
𝑑2𝑤/𝑑𝑧2

𝑑𝑤/𝑑𝑧

)2
(5.143)

We can check its validity by using the infinitesimal form.

Properties of Schwarzian Derivative:

• Composition Law

𝑢; 𝑧 = 𝑤; 𝑧 +
(
𝑑𝑤

𝑑𝑧

)2
𝑢;𝑤 (5.144)

•

{𝑤; 𝑧} = −
(
𝑑𝑤

𝑑𝑧

)2
{𝑧;𝑤} (5.145)

• {𝑤 : 𝑧} = 0 for 𝑤(𝑧) = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 , (𝑎𝑑 − 𝑏𝑐) = 1. That is, for global transformation, the

Schwarzian vanishes - which implies that𝑇 (𝑧) is only a Quasi-Primary field.

5.6 Physical Meaning of Central Charge

The central charge describes how a system behaves with a macroscopic length scale - intro-

duced, for example, by ’boundary conditions’ or ’curvature’. In what follows we will describe

these two instances of breaking local conformal symmetry.

5.6.1 CFT on a cylinder

Consider a CFT on the whole complex plane, with coordinates 𝑧, �̄�. We can map this theory

to a cylinder by the following transformation,

𝑧 → 𝑤 =
𝐿

2𝜋 ln 𝑧 (5.146)
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5 Conformal Invariance in 2 Dimensions

Under such a transformation,

𝑑𝑤

𝑑𝑧
=

𝐿

2𝜋 𝑧 =⇒ {𝑤; 𝑧} = 1
2𝑧2 (5.147)

So according to equation 5.142,

𝑇𝑐𝑦𝑙. (𝑤) =
(

2𝜋
𝐿

)2 [
𝑇𝑝𝑙.𝑧

2 − 𝑐

24

]
. (5.148)

If the vacuum energy density of the theory vanishes on the plane then we have ⟨𝑇𝑐𝑦𝑙. (𝑤)⟩ =

− 𝑐𝜋2

6𝐿2 meaning, the central charge is proportional to the change in vacuum energy density due

to the periodic boundary conditions of the cylinder (the Casimir Energy) - given by the scale

𝐿. Note that this energy goes naturally to zero as we remove the macroscopic scale (𝐿 → ∞).

5.6.2 CFT on a curved 2d manifold

When a conformal field theory is done on an arbitrary 2d manifold, there is a macroscopic

scale because of the Scalar curvature 𝑅. This makes the trace of the energy-momentum ten-

sor non-zero and proportional to the central charge

⟨𝑇 𝜇𝜇 (𝑥)⟩ 𝑔 =
𝑐

24𝜋 𝑅(𝑥). (5.149)

Again, this vanishes when we remove the scale in the theory (𝑅 → 0) corresponding to

the flat space, where we have indeed derived this to be zero.
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Chapter 6

Operator Formalism of 2d CFT
In this Chapter, we will study the quantum structure of conformal field theory from a canon-

ical perspective. The path integral approach is helpful in general while considering the be-

haviour of correlation function under symmetries, but the operator formalism allows us to

use many algebraic techniques to learn about the QFT. Since we are dealing with Euclidean

spacetime, we will first start by choosing a time direction in our 2d space and defining the

inner product on the Hilbert space. We then define mode expansions and radial ordering

and relate OPEs to commutators. We will then derive the Virasoro Algebra between the

quantum generators of conformal transformations (on the Hilbert space). We then look at

how primary fields help us construct the descendant states from the vacuum (or the asymp-

totic states), which are Hamiltonian eigenstates and closed under the Virasoro generators,

forming a Module under Virasoro algebra (called Verma Module). We will explicitly realise

this structure by considering free massless bosons with various boundary conditions. We

will then go deeper into the structure of CFTs, by considering normal ordering for fields

which are not free, then obtaining the so-called descendant fields that generate the descen-

dant states when applied on vacuum. This leads to conformal families and the OPEs of

descendants with stress tensor. This makes the Operator Algebra more natural, including all

the OPE’s regular terms. Two-point correlators are then considered, and using the symme-

try properties; the operator product coefficients are computed up to three-point correlator

coefficients for which we need further dynamical input. The process of finding any n-point

correlation function is indicated and explicitly shown for the 4-point function, where we

express the form in terms of conformal blocks (which can be computed just by symmetries)
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6 Operator Formalism of 2d CFT

and the three-point correlators. Further analysis of the 4-point function naturally leads to

crossing symmetry (which is the dynamical input, so to speak), which might constrain the

three-point coefficients - called the Conformal Bootstrap way of solving a particular CFT

completely.

6.1 Radial Quantization

In 2 Dimensions, the time direction can be chosen naturally to be the radial direction on the

complex plane, thus the name.

6.1.1 Map to Cylinder - Choose the time direction

By naturally - we mean the following:

We can compactify the space part of R2 as follows

𝑡 ∈ (−∞,∞) (6.1)

𝑥 ∈ [0, 𝐿); 𝑥 + 2𝜋𝐿 ≡ 𝑥 (6.2)

And in complex coordinates, this takes the form

𝜉 = 𝑡 + 𝑖𝑥, 𝜉 = 𝑡 − 𝑖𝑥. (6.3)

We map these coordinates onto a Riemann Sphere via,

𝑧 = exp
(
2𝜋 𝜉
𝐿

)
, �̄� = exp

(
2𝜋 𝜉
𝐿

)
(6.4)

and we note that,

123



6 Operator Formalism of 2d CFT

𝑡 → −∞ ≡ |𝑧 | → 0 =⇒ 𝑧 = 0, (6.5)

𝑡 → ∞ ≡ |𝑧 | → ∞ =⇒ 𝑧 → ∞ (6.6)

Thus, whenever we see 0 or ∞ popping in the fields’ arguments, we will talk about some-

thing asymptotic. So we essentially see that |𝑧 |, the radial coordinate on the full complex

plane (mapping from the cylinder), represents the time direction.

Like in any QFT, we will assume the existence of a vacuum state upon which the Hilbert

space will be constructed (via creation operators). And in any interacting field theory, we

hold the asymptotic fields 𝜙𝑖𝑛 ∝ lim𝑡→−∞ 𝜙(𝑥, 𝑡) and 𝜙𝑜𝑢𝑡 = lim𝑡→∞ 𝜙(𝑥, 𝑡) to be free.

And we define the asymptotic in-state as follows,

|𝜙𝑖𝑛⟩ = lim
𝑧,�̄�→0

𝜙(𝑧, �̄�) |0⟩ (6.7)

6.1.2 Inner Product

Hermitian conjugate in Minkowski space doesn’t affect the space-time coordinates, but when

going to the Euclidean version, i.e. setting 𝜏 = 𝑖𝑡 , we must reverse the time coordinate un-

der a Hermitian conjugation. Which translates to 𝑧 → 1
𝑧∗ in our coordinates. Thus, the

following Hermitian conjugation of the fields makes sense (on the real surface �̄� = 𝑧∗),

𝜙(𝑧, �̄�)† = �̄�−2ℎ𝑧−2ℎ̄𝜙

(
1
�̄�
,

1
𝑧

)
(6.8)

where 𝜙 is a quasi-primary with conformal dimensions (ℎ, ℎ̄). Using these pre-factors

has the following advantages,
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6 Operator Formalism of 2d CFT

⟨𝜙𝑜𝑢𝑡 |𝜙𝑖𝑛⟩ = lim
𝑧,�̄�,𝑤,�̄�→0

⟨0|𝜙(𝑧, �̄�)†𝜙(𝑤, �̄�) |0⟩

= lim
𝑧,�̄�,𝑤,�̄�→0

�̄�−2ℎ𝑧2ℎ̄ ⟨0|𝜙(1
�̄�
,

1
𝑧
)𝜙(0, 0) |0⟩

= lim
𝜉 ,𝜉→∞

𝜉 2ℎ𝜉 2ℎ̄ ⟨0|𝜙(𝜉 , 𝜉 )𝜙(0, 0) |0⟩

= C (6.9)

where we have let ⟨𝜙𝑜𝑢𝑡 | = |𝜙𝑖𝑛⟩† and used the form of two point correlator as ⟨𝜙(𝜉 , 𝜉 )𝜙(0, 0)⟩ =
C

𝜉 2ℎ𝜉 2ℎ̄ (already time-ordered). So ⟨𝜙𝑜𝑢𝑡 |𝜙𝑖𝑛⟩ is just a constant factor independent of 𝜉 and

thus well defined!

6.1.3 Mode Expansions

We expand the conformal field 𝜙(𝑧, �̄�) with conformal dimensions (ℎ, ℎ̄) into modes as,

𝜙(𝑧, �̄�) =
∑︁
𝑚∈Z

∑︁
𝑛∈Z

𝑧−𝑚−ℎ �̄�−𝑛−ℎ̄𝜙𝑚,𝑛 (6.10)

This is just a Laurent series that respects conformal scaling. The modes are then given by

1
2𝜋 𝑖

∮
𝜙(𝑧, �̄�) �̄�𝑛+ℎ̄−1𝑑𝑧 =

1
2𝜋 𝑖

∑︁
�̃�,�̃�∈Z

𝑧−�̃�−ℎ
∮

�̄�−1

�̄�𝑛−�̃�
𝜙�̃��̃�

=
∑̃︁
𝑚∈Z

𝑧−�̃�−ℎ𝜙�̃�𝑛

Perform one more integral over 𝑧𝑚+ℎ−1𝑑�̄� to write,

𝜙𝑚𝑛 =
1

2𝜋 𝑖

∮
𝑧𝑚+ℎ−1 1

2𝜋 𝑖

∮
𝑑�̄� �̄�𝑛+ℎ̄−1𝜙(𝑧, �̄�) (6.11)

From 6.11 and 6.8 we can get the usual expression,

𝜙†𝑚𝑛 = 𝜙−𝑚,−𝑛 (6.12)
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6 Operator Formalism of 2d CFT

which also justifies the ℎ, ℎ̄ in the mode expansions.

The annihilation of the vacuum by the positive field modes can be obtained from the

well- behavedness of |𝜙𝑖𝑛⟩ , |𝜙𝑜𝑢𝑡⟩:

|𝜙𝑖𝑛⟩ = lim
𝑧,�̄�→0

𝜙(𝑧, �̄�) |0⟩

= lim
𝑧,�̄�→0

∑︁
𝑚,𝑛∈Z

𝑧−𝑚−ℎ �̄�−𝑛−ℎ̄𝜙𝑚𝑛 |0⟩

Thus, in order to deal with the singular terms in the asymptotic limit; we let

𝜙𝑚𝑛 |0⟩ = 0
(
𝑚 > −ℎ, 𝑛 > −ℎ̄

)
(6.13)

We can lighten up the notation by hiding the anti-holomorphic dependence of the field,

keeping in mind that while there is �̄� dependence - in most of the cases, there is decoupling

between hol. and anti-hol. parts in 2d CFT.

𝜙(𝑧) ∼
∑︁
𝑚∈Z

𝑧−𝑚−ℎ𝜙𝑚 (6.14)

𝜙𝑚 =
1

2𝜋 𝑖

∮
𝑑𝑧𝑧𝑚+ℎ−1𝜙(𝑧) (6.15)

6.1.4 Radial Ordering and OPE

T 𝜙1(𝑧)𝜙2(𝑤) ≡ R𝜙1(𝑧)𝜙2(𝑤) =
{
𝜙1(𝑧)𝜙2(𝑤) |𝑧 | > |𝑤 |
𝜙2(𝑤)𝜙1(𝑧) |𝑧 | < |𝑤 |

(6.16)

The l.h.s of an OPE must be radially ordered!

Consider the following integral, which can be evaluated via the corresponding OPE

∮
𝑤

𝑑𝑧𝑎(𝑧)𝑏(𝑤) =
∫
𝐶1

𝑑𝑧𝑎(𝑧)𝑏(𝑤) −
∫
𝑐2

𝑑𝑧𝑏(𝑤)𝑎(𝑧)

= [𝐴, 𝑏(𝑤)] ; 𝐴 =

∮
𝑎(𝑧)𝑑𝑧 (6.17)
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The contour 𝐶1 encircles 0, 𝑤 with a |𝑧 | = |𝑤 | + 𝜖 and 𝐶2 encircles only the 0 with

|𝑧 | = |𝑤 | − 𝜖. We then take the limit 𝜖 → 0. Thus, the above is essentially an equal-time

commutator!

We thus write,

[𝐴, 𝐵] =
∮
𝑑𝑤

∮
𝑤

𝑑𝑧𝑏(𝑤)𝑎(𝑧) (6.18)

where 𝐴 =
∮
𝑎(𝑧)𝑑𝑧 and 𝐵 =

∮
𝑏(𝑧)𝑑𝑧. Unless explicitly mentioned otherwise, the

contour integrals are around the point 𝑧 = 0.

6.2 Virasoro Algebra

Recall the conformal ward Identity,

𝛿𝜖𝜖 ⟨𝑋 ⟩ = − 1
2𝜋 𝑖

∮
𝐶

𝑑𝑧𝜖(𝑧) ⟨𝑇 (𝑧)𝑋 ⟩ + 1
2𝜋 𝑖

∮
𝐶

𝑑�̄�𝜖( �̄�) ⟨�̄� ( �̄�)𝑋 ⟩ (6.19)

We can then define the conformal charge to be

𝑄𝜖 =
1

2𝜋 𝑖

∮
𝑑𝑧𝜖(𝑧)𝑇 (𝑧) (6.20)

and we can see that the ward identity gives 𝛿𝜖𝜙(𝑤) = −
[
𝑄𝜖 , 𝜙(𝑤)

]
! So𝑄𝜖 generates the

conformal transformations on the Hilbert space.

We then expand the stress tensor into modes 𝐿𝑛,

𝑇 (𝑧) =
∑︁
𝑛∈Z

𝑧−𝑛−2𝐿𝑛, 𝐿𝑛 =
1

2𝜋 𝑖

∮
𝑑𝑧𝑧𝑛+1𝑇 (𝑧) (6.21)

𝜖(𝑧) =
∑︁
𝑛∈Z

𝑧𝑛+1𝜖𝑛 (6.22)
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similarly for �̄� (𝑧), 𝜖(𝑧). Note that 𝑄𝜖 =
∑
𝑛∈Z 𝜖𝑛𝐿𝑛. So, the mode operators 𝐿𝑛, �̄�𝑛 are

the generators of the local conformal transformation on the Hilbert space. We had similar

generators (forming the Witt Algebra) on the space of functions.

We can derive the algebra between these generators using the OPE between the stress

tensors according to 6.18 and 5.139 to be as follows,

[𝐿𝑛, 𝐿𝑚] = (𝑛 −𝑚)𝐿𝑛+𝑚 + 𝑐

12𝑛
(
𝑛2 − 1

)
𝛿𝑛+𝑚,0[

𝐿𝑛, �̄�𝑚
]
= 0[

�̄�𝑛, �̄�𝑚
]
= (𝑛 −𝑚) �̄�𝑛+𝑚 + 𝑐

12𝑛
(
𝑛2 − 1

)
𝛿𝑛+𝑚,0 (6.23)

This is called the Virasoro Algebra. We note the additional central charge terms from the

Witt Algebra. But note that,

[𝐿∓1, 𝐿0] = ∓𝐿∓1 [𝐿1, 𝐿−1] = 2𝐿0 (6.24)

which is the same algebra obtained for Witt generators 𝑙−1,0,1.

We can conclude that generators of 𝑆𝐿(2,C) transformations (global conformal trans-

formations) on the Hilbert Space are again given by 𝐿−1, 𝐿0, 𝐿1. Here also, we see that

• 𝐿0 + �̄�0 generate the dilatations (𝑧, �̄�) → 𝜆(𝑧, �̄�) which correspond to the time trans-

lations. So the Hamiltonian of any CFT in 2D must be proportional to 𝐿0 + �̄�0!

• 𝑖 (𝐿0 − �̄�0) generate rotations.

• 𝐿−1, �̄�−1 generate translations.

• 𝐿1, �̄�1 generate special conformal transformations.

We deduce the above by noting the relevant non-zero terms in 𝜖(𝑧), 𝜖( �̄�).
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6.3 Hilbert Space

We can deduce a lot of information about the Hilbert Space of CFT just by the Virasoro

Generators and the primary fields.

1. The conformal invariance of the vacuum =⇒ 𝐿−1,0,1 annihilates the vacuum state

|0⟩. Since the Hamiltonian is given by 𝐿0, this fixes the ground state energy to be zero!

Another way to achieve this is by imposing the well-behavedness of𝑇 (𝑧) |0⟩ , �̄� ( �̄�) |0⟩

as 𝑧, �̄� → 0. This gives us

𝐿𝑛 |0⟩ = 0, �̄�𝑛 |0⟩ = 0. (𝑛 ≥ −1) . (6.25)

2. Primary Fields acting on the vacuum create asymptotic states, also the Hamiltonian’s

eigen states. Using the OPE between 𝑇 (𝑧) and a primary field 𝜙(𝑤, �̄�) we have the

following,

[
𝐿𝑛, 𝜙(𝑤, �̄�)

]
= ℎ(𝑛 + 1)𝑤𝑛𝜙(𝑤, �̄�) + 𝑤𝑛+1𝜕𝜙(𝑤, �̄�) (𝑛 ≥ −1) (6.26)

similarly with �̄�𝑛.

We define |ℎ, ⟩̄ = 𝜙(0, 0) |0⟩ as the primary state or the highest weight state with the

following behaviour implied by equation 6.26,

𝐿0 |ℎ, ℎ̄⟩ = ℎ |ℎ, ℎ̄⟩ (6.27)

�̄�0 |ℎ, ℎ̄⟩ = ℎ̄ |ℎ, ℎ̄⟩ (6.28)

𝐿𝑛 |ℎ, ℎ̄⟩ = 0, �̄�𝑛 |ℎ, ℎ̄⟩ = 0 (𝑛 > 0) (6.29)
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3. Excited states of the states |ℎ, ℎ̄⟩ can be obtained by the raising operators 𝜙−𝑚, 𝐿−𝑚 (𝑚 > 0)

which raise the conformal dimension ℎ by m - where 𝜙𝑚 are the modes of the primary

field 𝜙(𝑤, �̄�) defined in 6.15.

[
𝐿𝑛, 𝜙(𝑚

]
= (𝑛(ℎ − 1) −𝑚) 𝜙𝑛+𝑚 (6.30)[

𝐿0, 𝜙𝑚
]
= −𝑚𝜙𝑚 (6.31)

Thus, an excited state called the descendant state may be obtained as

𝐿−𝑘1 . . . 𝐿−𝑘𝑛 |ℎ⟩ , (6.32)

with 1 ≤ 𝑘1 ≤ . . . ≤ 𝑘𝑛 as a convention for the ordering. The conformal dimension

of the descendant state is ℎ′ = ℎ + 𝑘1 + . . . + 𝑘𝑛 ≡ ℎ +𝑁 , and we call 𝑁 the level of the

descendant. The number of linearly independent 𝑁 level descendants are just given

the partitions of the integer 𝑁 , 𝑝(𝑁 ).

4. These descendant states are closed under the conformal transformations given by 𝐿𝑛.

The space of an asymptotic state |ℎ⟩ and its descendants forms a representation/module

under the Virasoro algebra. This is the Verma Module.

6.4 Free Boson

Now let’s see all this manifest in the free massless Boson on a cylinder with a circumference

of L. We start with the following Lagrangian on 1+1 Minkowski Space,

L =
1
2 𝑔

∫
𝑑𝑥

(
(𝜕𝑡𝜑)2 −

(
𝜕𝑥𝜑

)2
)

(6.33)

and with boundary conditions 𝜑 (𝑥 + 𝐿, 𝑡) ≡ 𝜑(𝑥, 𝑡). Since the field is periodic in space

with a period 𝐿, we can expand it readily using the discrete Fourier series,
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𝜑(𝑥, 𝑡) =
∑︁
𝑛∈Z

𝑒2𝜋 𝑖𝑛𝑥/𝐿𝜑𝑛(𝑡) (6.34)

𝜑𝑛(𝑡) =
1
𝐿

∫
𝑑𝑥𝑒−2𝜋 𝑖𝑛𝑥/𝐿𝜑(𝑥, 𝑡) (𝜑†

𝑛 = 𝜑−𝑛) (6.35)

One can then rewrite the Lagrangian in terms of these modes to find out the conjugate

momenta and the Hamiltonian. We promote the fields into operators and impose the usual

commutation relation,
[
𝜑𝑛, 𝜋𝑚

]
= 𝑖𝛿𝑚𝑛

L =
1
2 𝑔𝐿

∑︁
𝑛

{
¤𝜑𝑛 ¤𝜑−𝑛 −

(
2𝜋𝑛
𝐿

)2
𝜑𝑛𝜑−𝑛

}
(6.36)

𝜋𝑛 = 𝑔𝐿 ¤𝜑−𝑛 (𝜋†
𝑛 = 𝜋−𝑛) (6.37)

𝐻 =
1

2𝑔𝐿
∑︁
𝑛

{
𝜋𝑛𝜋

†
𝑛 + (2𝜋𝑛𝑔)2𝜑𝑛𝜑−𝑛

}
(6.38)

The above Hamiltonian describes a decoupled oscillator system with frequencies 𝜔𝑛 =

2𝜋 |𝑛| /𝐿.

Since here there is a zero frequency mode 𝜙0, the usual definition of ladder operators via

�̃�𝑛 =
1

√
2𝜔𝑛

(
𝜔𝑛𝜙𝑛 + 𝑖𝜋†

)
(6.39)

doesn’t work. We instead define,

𝑎𝑛 =

{
−𝑖

√
𝑛�̃�𝑛 (𝑛 > 0)

𝑖
√
−𝑛�̃�†−𝑛 (𝑛 < 0)

(6.40)

�̄� =

{
−𝑖

√
𝑛�̃�−𝑛 (𝑛 > 0)

𝑖
√
−𝑛�̃�†𝑛 (𝑛 < 0)

(6.41)

and treat the zero mode 𝜑0 separately. The commutation relations then differ from the

usual commutation rules obeyed by �̃�𝑛,
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[𝑎𝑛, 𝑎𝑚] = 𝑛𝛿𝑛+𝑚 [𝑎𝑛, �̄�𝑚] = 0 [ �̄�𝑛, �̄�𝑚] 𝑛𝛿𝑛+𝑚 (6.42)

We can then write the Hamiltonian as,

𝐻 =
1

2𝑔𝐿 𝜋
2
0 + 2𝜋

𝐿

∑︁
𝑛>0

(𝑎−𝑛𝑎𝑛 + �̄�−𝑛 �̄�𝑛) (6.43)

with

[𝐻, 𝑎−𝑚] =
2𝜋
𝐿
𝑚𝑎−𝑚, [𝐻, �̄�−𝑚] =

2𝜋
𝐿
𝑚�̄�−𝑚 (6.44)

So, 𝑎−𝑚 (𝑚 > 0) raises the energy of an eigenstate of 𝐻 by 2𝑚𝜋
𝐿

.

We can then express the field 𝜑 at 𝑡 = 0 as

𝜑(𝑥) = 𝜑0 +
𝑖√︁

4𝜋 𝑔

∑︁
𝑛≠0

1
𝑛
(𝑎𝑛 − �̄�−𝑛) 𝑒2𝜋 𝑖𝑛𝑥/𝐿 (6.45)

One can obtain the Heisenberg operators (time evolution) of these fields via the Hamil-

tonian 6.43 to be,

𝜑0(𝑡) = 𝜙0(0) +
1
𝑔𝐿
𝜋0𝑡

𝑎𝑛(𝑡) = 𝑎𝑛(0)𝑒−2𝜋 𝑖𝑛𝑡/𝐿, �̄�𝑛(𝑡) = �̄�𝑛(0)𝑒−2𝜋 𝑖𝑛𝑡/𝐿 (6.46)

We thus find the full mode expansion of the field at any time t to be,

𝜑(𝑥, 𝑡) = 𝜑0 +
1
𝑔𝐿
𝜋0𝑡 +

𝑖√︁
4𝜋 𝑔

∑︁
𝑛≠0

1
𝑛

(
𝑎𝑛𝑒

2𝜋 𝑖𝑛(𝑥−𝑡)/𝐿 − �̄�−𝑛𝑒2𝜋 𝑖𝑛(𝑥+𝑡)/𝐿
)

(6.47)

In order to realize the structure imposed by the 2D conformal symmetry, we must go to

the complex plane. We do so by first going to Euclidean space-time by taking 𝑡 → −𝑖𝜏 and

then mapping the cylinder to the complex plane via the familiar transformation,
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𝑧 = 𝑒2𝜋 (𝜏−𝑖𝑥)/𝐿 �̄� = 𝑒2𝜋 (𝜏+𝑖𝑥)/𝐿 . (6.48)

In these complex coordinates, the mode expansion of 𝜑 reads,

𝜑(𝑧, �̄�) = 𝜑0 −
𝑖

4𝜋 𝑔 𝜋0 ln(𝑧 �̄�) + 𝑖√︁
4𝜋 𝑔

∑︁
𝑛≠0

1
𝑛
(𝑎𝑛𝑧−𝑛 + �̄�𝑛 �̄�−𝑛) (6.49)

We immediately notice that this is far from the mode expansion of a primary field (6.14),

𝜙(𝑧) =
∑︁
𝑛∈Z

𝑧−𝑛−ℎ𝜙𝑛. (6.50)

We already know that 𝜑 is not a primary field, but its derivative is. We find that,

𝑖𝜕𝜑(𝑧) = 1
4𝜋 𝑔

𝜋0
𝑧

+ 1√︁
4𝜋 𝑔

∑︁
𝑛≠0

𝑎𝑛𝑧
−𝑛−1 (6.51)

And thus we are finally motivated to define 𝑎0 using the zero mode 𝜋0,

𝑎0 ≡ �̄�0 =
𝜋0√︁
4𝜋 𝑔

(6.52)

which puts 𝑖𝜕𝜑 indeed in the form of 6.14!

𝑖𝜕𝜑(𝑧) = 1√︁
4𝜋 𝑔

∑︁
𝑛

𝑎𝑛𝑧
−𝑛−1 (6.53)

We note the conformal dimension ℎ = 1. The case of 𝜕𝜑( �̄�) is similar with ℎ̄ = 1.

Although the field 𝜑 is not primary, it allows us to construct other primary fields - called

vertex operators:

V𝛼 (𝑧, �̄�) =: 𝑒𝑖 𝛼𝜑(𝑧,�̄�) : (6.54)
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In terms of the field modes, the normal ordering splits the exponential into two exponen-

tials, one on the left containing creation operators and another with annihilation operators

placed to the right.

Recall from 5.89 that𝑇 (𝑧) = −2𝜋 𝑔 : 𝜕𝜑(𝑧)𝜕𝜑(𝑧) : for the massless free Boson.

We can then compute the OPE of V𝛼 with𝑇 (𝑧) by writing the exponential as a sum and

using Wick’s theorem,

𝑇 (𝑧)V𝛼 (𝑤, �̄�) = − 2𝜋 𝑔
∞∑︁
𝑛=0

(𝑖 𝛼)𝑛
𝑛! : 𝜕𝜑(𝑧)𝜕𝜑(𝑧) :: 𝜑(𝑤, �̄�)𝑛 :

∼ − 1
8𝜋 𝑔

1
(𝑧 − 𝑤)2

∞∑︁
𝑛=2

(𝑖 𝛼)𝑛
(𝑛 − 2)! : 𝜑(𝑤, �̄�)𝑛−2 :

+ 1
𝑧 − 𝑤

∞∑︁
𝑛=1

(𝑖 𝛼)𝑛
𝑛! 𝑛 : 𝜕𝜑(𝑧)𝜑(𝑤, �̄�)𝑛−1 :

∼ 𝛼2

8𝜋 𝑔
V𝛼 (𝑤, �̄�)
(𝑧 − 𝑤)2 + 𝜕𝑤V𝛼 (𝑤, �̄�)

𝑧 − 𝑤 (6.55)

We thus note that V𝛼 is a primary field with conformal dimension ℎ = 𝛼2

8𝜋 𝑔 . It also

follows that ℎ̄ = 𝛼1

8𝜋 𝑔 .

The OPE between these vertex operators can be computed by using the following rela-

tion,

: 𝑒𝐴1 :: 𝑒𝐴2 :=: 𝑒𝐴1+𝐴2 : 𝑒⟨𝐴1𝐴2⟩ (6.56)

where 𝐴1, 𝐴2 are some linear combination of annihilation and creation operators. Ap-

plied this to field V𝛼 and 𝜑 gives,

V𝛼 (𝑧, �̄�)V𝛽 (𝑤, �̄�) ∼ |𝑧 − 𝑤 |2𝛼𝛽/4𝜋 𝑔V𝛼+𝛽 (𝑤, �̄�) + · · · (6.57)

But Conformal Invariance fixes the form of such two-point correlation functions, i.e.
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ℎ𝛼 = ℎ𝛽 =⇒ 𝛼2 = 𝛽2 and we also impose 𝛼𝛽 < 0 so that the functions are local and decay

with distance - so the above correlator doesn’t vanish for 𝛼 = −𝛽,

V𝛼 (𝑧, �̄�)V−𝛼 (𝑤, �̄�) ∼ |𝑧 − 𝑤 |−2𝛼2 + · · · (6.58)

The general result is that the𝑛-point correlators of vertex operators vanish unless∑𝑛
𝑖=1 𝛼𝑖 =

0.

We will now construct the Fock Space, where we will also see the role of Vertex Operators.

1. We first note that 𝑎𝑛, �̄�𝑛 are annihilation operators for 𝑛 > 0 and creation operators

for 𝑛 < 0. And since 𝜋0 occurring in the Hamiltonian commutes with all of the other

terms (𝑎𝑛, �̄�𝑛), we can label the eigenstates of Hamiltonian with the eigenvalues of 𝜋0.

We see that the vacuum is now a one-parameter family of vacua |𝛼⟩ where 𝛼 is the

eigenvalue of 𝑎0 = 𝜋0/
√︁

4𝜋 𝑔. That is,

𝑎𝑛 |𝛼⟩ = �̄�𝑛 |𝛼⟩ = 0 (𝑛 > 0) where 𝑎0 |𝛼⟩ = �̄�0 |𝛼⟩ = 𝛼 |𝛼⟩ (6.59)

2. The energy-momentum tensor (holomorphic) is given by

𝑇 (𝑧) = −2𝜋 𝑔 : 𝜕𝜑(𝑧)𝜕𝜑(𝑧) :

=
1
2

∑︁
𝑛,𝑚∈Z

𝑧−𝑛−𝑚−2 : 𝑎𝑛𝑎𝑚 : (6.60)

We immediately compare this with the mode expansion 6.21 and write,

𝐿𝑛 =
1
2

∑︁
𝑚∈Z

𝑎𝑛−𝑚𝑎𝑚 (𝑛 ≠ 0)

𝐿0 =
∑︁
𝑛>0

𝑎−𝑛𝑎𝑛 +
1
2𝑎

2
0 (6.61)
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And we recover the expected Hamiltonian form for a 2D CFT,

𝐻 =
2𝜋
𝐿

(
𝐿0 + �̄�0

)
. (6.62)

3. We see that 𝑎𝑚 and 𝐿𝑚 behave similarly to the Hamiltonian (or 𝐿0). We construct the

excited stated by successively acting 𝑎−𝑚 and �̄�−𝑛 on the vacua |𝛼⟩.

𝑎
𝑛1
−1𝑎

𝑛2
−2 · · · 𝑎

−𝑚1
−1 𝑎

−𝑚2
−2 · · · |𝛼⟩ (𝑛𝑖 , 𝑚𝑗 ≥ 0) (6.63)

Note that |𝛼⟩ has a conformal dimension of 𝛼2

2 given by the action of 𝐿0! So, these

states are the eigenstates of 𝐿0, �̄�0 with conformal dimensions (eigenvalues)

ℎ =
1
2 𝛼

2 +
∑︁
𝑗

𝑗𝑛𝑗 , ℎ̄ =
1
2 𝛼

2 +
∑︁
𝑗

𝑗𝑚𝑗 (6.64)

This is, of course, reminiscent of the descendant states 6.32.

4. The punchline of this entire construction is given by the following claim,

|𝛼⟩ = V𝛼 (0) |0⟩ (6.65)

The vertex operator, being a primary field, essentially creates an asymptotic eigenstate

of the Hamiltonian (the primary state or the highest weight state) from which we can

build the descendant states.

Using the mode expansions, we can now compute the two-point functions. We are

keener about the correlator of the primary field 𝜕𝜑,

⟨𝜑(𝑧)𝜕𝜑(𝑤)⟩ =
∑︁
𝑚,𝑛≠=

1
𝑛
⟨𝑎𝑛, 𝑎𝑚⟩ 𝑧−𝑛𝑤−𝑚−1 (6.66)

=
1
𝑤

∑︁
𝑛>0

(𝑤
𝑧

)𝑛
(6.67)

=
1

𝑧 − 𝑤 (6.68)
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where we have used,

⟨𝑎𝑛𝑎𝑚⟩ =
{
⟨𝑎𝑚𝑎𝑛 + [𝑎𝑛, 𝑎𝑚]⟩ = 𝑛𝛿𝑛+𝑚 𝑛 > 0
0 𝑛 ≤ 𝑚

(6.69)

Note that we have used the holomorphic part of 𝜑(𝑧, �̄�) since it’s the only term that con-

tributes to the ⟨𝜕𝜑⟩ 𝜕𝜑.

Differentiating equation 6.68 with respect to 𝑧 gives,

⟨𝜕𝜑(𝑧)𝜕𝜑(𝑤)⟩ = − 1
(𝑧 − 𝑤)2 (6.70)

which is the same as the one we derived using the Path Integral formulation. We can

compute the vacuum energy density using,

𝑇 (𝑧) = −1
2 : 𝜕𝜑(𝑧)𝜕𝜑(𝑧) :

⟨𝑇 (𝑧)⟩ = −1
2 lim
𝜖→0

(
⟨𝜕𝜑(𝑧 + 𝜖)𝜕𝜑(𝑧)⟩ + 1

𝜖2

)
(6.71)

which is just zero in the light of 6.70. And when we go back to the cylinder, we know

from our central charge discussion that we must modify this vacuum density as,

⟨𝑇 (𝑧)⟩𝑐𝑦𝑙. = − 1
24

(
2𝜋
𝐿

)2
(6.72)

where we have used 𝑐 = 1. This allows us to fix the constants in 𝐿0,

𝐿0 =


∑
𝑛>0 𝑎−𝑛𝑎𝑛 Plane

∑
𝑛>0 𝑎−𝑛𝑎𝑛 − 1

24 Cylinder
(6.73)

Hamiltonian on the cylinder is then given by,
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𝐻 =
2𝜋
𝐿

(
(𝐿0)𝑐𝑦𝑙. +

(
�̄�0

)
𝑐𝑦𝑙.

)
(6.74)

=
2𝜋
𝐿

(
𝐿0 + �̄�0 −

1
12

)
(6.75)

More generally, we note that,

𝐻𝑐𝑦𝑙. =
2𝜋
𝐿

(
𝐿0 + �̄�0 −

𝑐

12

)
(6.76)

where 𝐿0 are the modes of stress tensor on the plane.

6.4.1 Twisted Boundary conditions

Since, the Lagrangian is quadratic we can also choose anti-periodic (or twisted) boundary

conditions for the field 𝜑, i.e. 𝜑(𝑥 + 𝐿, 𝑡) ≡ −𝜑(𝑥, 𝑡) This has the following effect on the

theory:

1. From the Fourier series, we can immediately conclude that 𝜑0 = 0 and the summation

of modes is over half integers 𝑛.

2. The ladder operators are defined the same way, obeying the same commutation rela-

tions as before but labeled by half-integers.

3. The field now is a multi-valued function on the cylinder. One can define the theory

on two Riemann Sheets when mapped to the complex plane.

4. If we define the operator 𝐺 that takes 𝜑 to −𝜑, via 𝐺𝜑𝐺−1 = −𝜑 (i.e. G allows us to

move between the Riemann Sheets), then it follows that

𝐺𝜑𝐺−1 = 𝜑 =⇒
{
𝐺, 𝜑

}
= 0 =⇒ {𝐺, 𝑎𝑛} = 0; [𝐺, 𝐻 ] = 0 (6.77)

138



6 Operator Formalism of 2d CFT

And 𝐺2 = 1 implies that every eigenstate of 𝐻 is degenerate corresponding to ±1

eigenvalues of 𝐺. So, unlike the periodic case where we had vacua for each 𝛼 (corre-

sponding to V𝛼), we have a doubly degenerate vacuum - |0+⟩ , |0−⟩ (corresponding to

𝐺).

5. Going back to equation 6.67, we can rewrite this sum over half-integers instead for the

anti-periodic case to get

⟨𝜑(𝑧)𝜕𝜑(𝑤)⟩ = 1
𝑤

√︂
𝑤

𝑧

1
𝑧 − 𝑤 (6.78)

which, upon differentiating with 𝑧 gives,

⟨𝜕𝜑(𝑧)𝜕𝜑(𝑤)⟩ = −1
2

√︁
𝑧/𝑤 +

√︁
𝑤/𝑧

(𝑧 − 𝑤)2 (6.79)

6. We can immediately calculate the central charge,

𝑇 (𝑧)𝑇 (𝑤) = 1
4 : 𝜕𝜑(𝑧)𝜕𝜑(𝑧) :: 𝜕𝜑(𝑤)𝜕𝜑(𝑤) :

∼ −1
4


1
4

(√︁
𝑧/𝑤 +

√︁
𝑤/𝑧

)2

(𝑧 − 𝑤)4 − 41
2

(√︁
𝑧/𝑤 +

√︁
𝑤/𝑧

)
: 𝜕𝜑(𝑧)𝜕𝜑(𝑤) :

(𝑧 − 𝑤)2


∼ −1/4

(𝑧 − 𝑤)2 + 2𝑇 (𝑤)
(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)

(𝑧 − 𝑤) (6.80)

So, 𝑐 = −1/2 for the anti-periodic boundary conditions. Note that we took the limit

𝑧 → 𝑤, which gives the complete form of the singularities.

7. With the two-point function 6.79 the vacuum energy density on the plane(according

to 6.71) becomes,

⟨𝑇 (𝑧)⟩ = −1
2 lim
𝜀→0

() (6.81)

8. On the cylinder, due to the central charge we,

⟨𝑇 (𝑧)⟩𝑐𝑦𝑙. =
1

48

(
2𝜋
𝐿

)2
(6.82)
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9.

𝐿0 =


∑
𝑛>0 𝑎−𝑛𝑎𝑛 + 1

16 Plane

∑
𝑛>0 𝑎−𝑛𝑎𝑛 + 1

16 − 1
48 Cylinder

(6.83)

Hamiltonian on the cylinder is then given by,

𝐻 =
2𝜋
𝐿

(
(𝐿0)𝑐𝑦𝑙. +

(
�̄�0

)
𝑐𝑦𝑙.

)
=

2𝜋
𝐿

(
𝐿0 + �̄�0 +

1
24

)
(6.84)

6.5 Conformal Families

We have adopted the following procedure of subtracting the vacuum expectation value from

the product of fields in order to normally order it,

: 𝐴𝐵 := (𝐴𝐵 − ⟨𝐴𝐵⟩) (6.85)

but considering fields like𝑇 (𝑧), subtracting the expectation value only removes the lower

order singularities, and there is a remaining singularity due to the central charge,

: 𝑇 (𝑧)𝑇 (𝑧) :∼ lim
𝑧→𝑤

𝑐/2
(𝑧 − 𝑤)4 (6.86)

In this sense, fields like𝑇 (𝑧) are not free. We generalize the procedure of normal ordering

to the product of such fields by subtracting all the singularities from the product expansion,

i.e.

If the OPE of 𝐴, 𝐵 is written as,

𝐴(𝑧)𝐵 (𝑤) =
𝑁∑︁

𝑛=−∞

{𝐴𝐵}𝑛 (𝑤)
(𝑧 − 𝑤)𝑛 (6.87)
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then, we define the generalized normal ordering as

(𝐴𝐵) (𝑤) = {𝐴𝐵}0 (𝑤) (6.88)

= lim
𝑧→𝑤

[𝐴(𝑧)𝐵 (𝑤) − 𝐶𝐴(𝑧)𝐵 (𝑤)] (6.89)

≡ 1
2𝜋 𝑖

∮
𝑤

𝑑𝑧

𝑧 − 𝑤 𝐴(𝑧)𝐵 (𝑤) (6.90)

where the contraction 𝐶𝐴(𝑧)𝐵 (𝑤) now includes all the singular terms of OPE,

𝐶𝐴(𝑧)𝐵 (𝑤) =
𝑁∑︁
𝑛=1

{𝐴𝐵}𝑛 (𝑤)
(𝑧 − 𝑤)𝑛 (6.91)

With this formulation, we note that the OPE can be written as,

𝐴(𝑧)𝐵 (𝑤) = 𝐶𝐴(𝑧)𝐵 (𝑤) + (𝐴(𝑧)𝐵 (𝑤)) (6.92)

where the regular part is given by,

(𝐴(𝑧)𝐵 (𝑤)) =
∑︁
𝐾≥0

(𝑧 − 𝑤)𝑘

𝑘!

(
𝜕𝑘𝐴𝐵

)
(𝑤) (6.93)

Representing normal ordering in terms of the contour integral (6.90) is very convenient.

We can apply some of these results on the OPE of 𝑇 (𝑧) and some arbitrary field 𝐴(𝑤)

to gain some insights,

First, expand𝑇 (𝑧) around 𝑤 as,

𝑇 (𝑧) =
∑︁
𝑛∈Z

(𝑧 − 𝑤)−𝑛−2 𝐿𝑛(𝑤) (6.94)

𝐿𝑛(𝑤) =
1

2𝜋 𝑖

∮
𝑤

𝑑𝑧(𝑧 − 𝑤)𝑛+1𝑇 (𝑧) (6.95)

then,
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𝑇 (𝑧)𝐴(𝑤) =
∑︁
𝑛∈Z

(𝑧 − 𝑤)−𝑛−2 (𝐿𝑛𝐴) (𝑤) (6.96)

(𝐿𝑛𝐴) (𝑤) defines the regular composite fields in the OPE (6.87), which can be deduced

by comparing with the Taylor expansion 6.91 and the singular terms of OPE for a primary

field,

𝑇 (𝑧)𝐴(𝑤) = · · · + ℎ𝐴𝐴(𝑤)
(𝑧 − 𝑤)2 + 𝜕 𝐴(𝑤)

(𝑧 − 𝑤) + (𝑇 𝐴) (𝑤) + (𝑧 − 𝑤) (𝜕𝑇 𝐴) (𝑤) + · · · (6.97)

We thus note,

(𝐿0𝐴) (𝑤) = ℎ𝐴𝐴(𝑤) (6.98)

(𝐿−1𝐴) (𝑤) = 𝜕 𝐴(𝑤) (6.99)

(𝐿−𝑛−2𝐴) (𝑤) =
1
𝑛!

(𝜕𝑛𝑇 𝐴) (𝑤) (6.100)

𝐿0, 𝐿−1 clearly reflects the nature of scaling and translation generators. For primary

fields,
(
𝐿𝑛𝜙

)
= 0 for 𝑛 > 0.

Using the contour integral version of the normal ordering and the mode expansions of

fields around arbitrary points, we can derive the following normal ordering between the

modes. If we write

(𝐴𝐵) (𝑧) = ∑
𝑧−𝑛−ℎ𝐴−ℎ𝐵 (𝐴𝐵)𝑛, we get:

(𝐴𝐵)𝑚 =
∑︁
𝑛≤−ℎ𝐴

𝐴𝑛𝐵𝑚−𝑛 +
∑︁
𝑛>−ℎ𝐴

𝐵𝑚−𝑛𝐴𝑛 (6.101)

This expression is very useful because it allows us to compute the form of the composite

fields explicitly in terms of the modes of individual fields! Few of the composite fields are

familiar in the case of OPEs with𝑇 (𝑧), and the above is the generalization to arbitrary OPEs.
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With the above machinery in mind, we can now understand how, for every descendant

state, there is a corresponding field descendant to the associated primary field. We already

know that the primary fields manufacture the descendant states, leading to an infinite num-

ber of (descendant) states. We see the correspondence as follows:

Consider a descendant 𝐿−𝑛 |ℎ⟩ due to a primary field 𝜙, then,

𝐿−𝑛 |ℎ⟩ = 𝐿−𝑛𝜙(0) |0⟩ =
1

2𝜋 𝑖 =
∮
𝑑𝑧𝑧1−𝑛𝑇 (𝑧)𝜙(0) |0⟩ (6.102)

≡
(
𝐿−𝑛𝜙

)
(0) |0⟩ (6.103)

the last line follows from the definition 6.96

We then extend the above and define the descendant field associated with the state 𝐿−𝑛 |ℎ⟩

to be,

𝜙−𝑛(𝑤) ≡
(
𝐿−𝑛𝜙

)
(𝑤) = 1

2𝜋 𝑖

∮
𝑤

𝑑𝑧
𝑇 (𝑧)𝜙(𝑤)
(𝑧 − 𝑤)𝑛−1 (6.104)

We connect the machinery of the normal ordering and OPE to note that the above fields

are just the fields that appear in the OPE of𝑇(𝑧) with 𝜙(𝑤). So from 6.98

𝜙(0) (𝑤) = ℎ𝜙(𝑤) 𝜙−1(𝑤) = 𝜕𝜙(𝑤) (6.105)

The importance of primary fields in a CFT is clear: these define the asymptotic states on

which we can build Hamiltonian’s higher conformal dimensional eigenstates. We now see

that these primary fields also have descendant fields. In particular note that, 𝑇 (𝑤) is a level

2 descendant of the identity operator (𝐿−2I)! And 𝜕𝜙 is a level 1 descendant of the primary

field 𝜙. The set containing the primary field and its descendants is called a conformal family

(denoted [𝜙]).

A correlator of form ⟨
(
𝐿−𝑛𝜙

)
(𝑤)𝑋 ⟩ where 𝑋 = 𝜙1(𝑤1) . . . 𝜙𝑁 (𝑤𝑁 ) is a collection of

primary fields, can be computed using the OPE of𝑇 (𝑧) with primaries:
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⟨𝜙−𝑛(𝑤)𝑋 ⟩ = L−𝑛 ⟨𝜙(𝑤)𝑋 ⟩ (𝑛 ≥ 1) (6.106)

where,

L−𝑛 ≡
∑︁
𝑖

{
(𝑛 − 1)ℎ𝑖
(𝑤𝑖 − 𝑤)𝑛

− 1
(𝑤𝑖 − 𝑤)𝑛−1 𝜕𝑤𝑖

}
(6.107)

Similar result follows for higher order descendants corresponding to 𝐿−𝑘𝐿−𝑛 |0⟩,

𝜙(−𝑘,−𝑛) (𝑤) = (𝐿−𝑘𝐿−𝑛𝜙) (𝑤) (6.108)

=
1

2𝜋 𝑖

∮
𝑤

𝑑𝑧(𝑧 − 𝑤)1−𝑘𝑇 (𝑧) (𝐿−𝑛𝜙) (𝑤) (6.109)

⟨𝜙(−𝑘1,...,−𝑘𝑛) (𝑤)𝑋 ⟩ = L−𝑘1 . . .L−∥\ ⟨𝜙(𝑤)𝑋 ⟩ (6.110)

Since 𝐿0, 𝐿−1 are the generators for dilations and translations, it follows that

𝜙(0,−𝑛) (𝑤) = (ℎ + 𝑛) 𝜙(−𝑛) (𝑤) 𝜙(−1,−𝑛) (𝑤) = 𝜕𝑤𝜙(−𝑛) (𝑤). (6.111)

The general result and conclusion of the above is that any correlators involving a collec-

tion of descendant fields and primary fields can all be converted to correlators of primary

fields, whose 2-point and 3-point forms are already restricted from the symmetries of CFT.

It follows from the definition that the conformal family is closed under conformal transfor-

mations, which are essentially generated by 𝐿𝑛. This translates to the statement that the OPE

between 𝑇 (𝑧) a member of the conformal family involves just the other members in it. In

fact, this can be made explicit by using the already known singularities in the OPE of𝑇 (𝑧)

with itself in computing 𝑇 (𝑧)𝜙(−𝑛) (𝑤). It is thus fruitful to organize a 2D CFT into con-

formal families, which are closed under the OPEs with the stress tensor, and any correlator

involving the descendants can be calculated using the correlators of primaries.
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6.6 Operator Algebra and Correlation functions

1. From above sections, it is clear that the problem of finding correlation functions in a

CFT boils down to the correlation functions of primary field. Symmetries allowed us

to restrict the form of the 2-point and 3-point correlators of such fields up to some

coefficients. For the 2-point correlators, we had:

⟨𝜙𝑖 (𝑤, �̄�), 𝜙𝑗 (𝑧, �̄�)⟩ =
𝐶𝑖𝑗

(𝑤 − 𝑧)2ℎ (�̄� − �̄�)2ℎ̄
. (6.112)

which vanishes for fields with different conformal dimensions. The coefficients (which

are symmetric) are undetermined and can be chosen upon appropriate normalisation

of the fields such that 𝐶𝑖𝑗 = 𝛿𝑖𝑗 . This defines a notion of orthogonality between

two primary fields. In fact, this can be traced back to the orthogonality of the cor-

responding states of the Verma Module. Under a global conformal transformation,

𝑤 → ∞, 𝑧 → 0:

lim
𝑤,�̄�→∞

𝑤2ℎ�̄�2ℎ̄ ⟨𝜙(𝑤, �̄�)𝜙′(0, 0)⟩ = ⟨ℎ, ℎ̄|ℎ′, ℎ̄′⟩ (6.113)

The three-point function coefficients however remain undetermined.

2. While computing the correlation functions, the strategy of transforming the coordi-

nates to specific points like∞, 0, 1 will be heavily used in order to simplify the problem.

3. Our main strategy to compute the correlation functions between arbitrary primary

fields involves the operator algebra, which essentially consists of the OPEs of all the

primary fields with each other. For example, in order to compute the three-point co-

efficients, we consider the full OPE of two primary fields:

𝜙1(𝑧, �̄�)𝜙2(0, 0) =
∑︁
𝑝

∑︁
{𝑘,�̄�}

𝐶
𝑝{𝑘,�̄�}

12 𝑧ℎ𝑝−ℎ1−ℎ2+𝐾 �̄�ℎ̄𝑝−ℎ̄1−ℎ̄2+�̄� 𝜙{𝑘,�̄�}𝑝 (0, 0) (6.114)
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where we have basically expanded the product of two primary fields in terms of all the

other primary fields in the theory along with their descendants. 𝐾, �̄� are the levels of

the descendants, i.e. 𝐾 =
∑
𝑖 𝑘𝑖 .

4. Taking a correlation of this product with another primary field 𝜙𝑟 (𝑤, �̄�) with confor-

mal dimension
(
ℎ𝑟 , ℎ̄𝑟

)
. Transforming 𝑤 → ∞ on the l.h.s gives,

⟨𝜙𝑟𝜙1(𝑧, �̄�)𝜙2⟩ = lim
𝑤,�̄�→∞

𝑤2ℎ𝑟 �̄�2ℎ̄𝑟 ⟨𝜙𝑟 (𝑤, �̄�)𝜙1(𝑧, �̄�)𝜙2(0, 0)⟩ (6.115)

=
𝐶𝑟12

𝑧ℎ1+ℎ2−ℎ𝑟 �̄�ℎ̄1+ℎ̄2−ℎ̄𝑟
(6.116)

where 𝐶𝑟12 are the three-point coefficients. On the r.h.s of 6.114 after taking the cor-

relator, it is non-vanishing only for 𝑝 = 𝑟, {𝑘, �̄�} = 0, 0due to the orthogonality of the

Verma modules produced by the primary fields. So, we deduce that the coefficients

𝐶
𝑝{0,0̄}

12 which correspond to the coefficients of the most singular terms in the full

OPE are equal to the three-point coefficients.

5. Upon conformal transformation on both sides of equation 6.114, one can deduce the

natural separation between the descendant (and holomorphic, anti-holomorphic) co-

efficients:

𝐶
𝑝{𝑘,�̄�}

12 = 𝐶
𝑝

12𝛽
𝑝{𝑘}
12 𝛽

𝑝{�̄�}
12 . (6.117)

The above procedure can explicitly compute these 𝛽s in terms of conformal dimen-

sions of all the fields and central charge. We set 𝛽 𝑝{0}
𝑖𝑗

to 1 as a convention.

6. This demonstrates how a full operator algebra for two primary fields can be computed

by symmetry once we know the central charge, conformal dimensions of all the fields

and the three-point coefficients 𝐶𝛼𝛽𝛾 .
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6.7 Conformal Blocks, Crossing Symmetry and Confor-
mal Bootstrap

We can use the above operator algebra successively to compute any n-point function. Let’s

see this in the case of the 4-point correlator,

⟨𝜙1(𝑧1, �̄�1)𝜙2(𝑧2, �̄�2)𝜙3(𝑧3, �̄�3)𝜙4(𝑧4, �̄�4)⟩ (6.118)

1. The anharmonic ratios which are invariant under conformal transformations gives a

convenient way to simplify the above problem. We can let 𝑧1 = ∞, 𝑧2 = 1, 𝑧3 = 𝑥, 𝑧4 =

0 under a global conformal transformation. Essentially, the existence of anharmonic

ratio fixes (equals) one of the points when all the other points are mapped to 1, 0,∞.

The four-point correlator subsequently only depends on this point continuously.

So the correlator now equals,

lim
𝑧1,�̄�1→∞

𝑧
2ℎ1
1 �̄�

2ℎ̄1
1 ⟨𝜙1(𝑧1, �̄�1)𝜙2(1, 1)𝜙3(𝑥, 𝑥)𝜙4(0, 0)⟩ = 𝐺21

34 (𝑥, 𝑥) (6.119)

≡ ⟨ℎ1, ℎ̄1 |𝜙2(1, 1)𝜙3(𝑥, 𝑥) |ℎ4, ℎ̄4⟩
(6.120)

2. We now use the operator algebra of 𝜙3(𝑧, �̄�)𝜙4(0, 0) by separating the 𝑝,
{
𝑘, �̄�

}
de-

pendent terms,

𝜙3(𝑥, 𝑥)𝜙4(0, 0) =
∑︁
𝑝

𝐶
𝑝

34𝑥
ℎ𝑝−ℎ3−ℎ4𝑥 ℎ̄𝑝−ℎ̄3−ℎ̄4

∑︁
{𝑘,�̄�}

𝛽
𝑝{𝑘}
34 𝛽

𝑝{�̄�}
34 𝑥𝐾 𝑥 �̄� 𝜙

{𝑘,�̄�}
𝑝 (0, 0)

(6.121)

we can denote the last term which is summed over
{
𝑘, �̄�

}
as Ψ𝑝 (𝑥, 𝑥 |0, 0).
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3. In this notation, the correlator reads,

𝐺21
34 (𝑥, 𝑥) =

∑︁
𝑝

𝐶
𝑝

34𝐶
𝑝

12𝐴
21
34( 𝑝 |𝑥, 𝑥) (6.122)

where we define 𝐴21
34( 𝑝 |𝑥,𝑥) as follows (which also decouples into holomorphic and

anti- holomorphic parts)

𝐴21
34( 𝑝 |𝑥, 𝑥) = (𝐶 𝑝12)

−1𝑥ℎ𝑝−ℎ3−ℎ4𝑥 ℎ̄𝑝−ℎ̄3−ℎ̄4 ⟨ℎ1, ℎ̄1 |𝜙2(1, 1)Ψ𝑝 (𝑥, 𝑥 |0, 0) |0⟩ (6.123)

= F 21
34 ( 𝑝 |𝑥)F̄ 21

34 ( 𝑝 |𝑥) (6.124)

where

F 21
34 ( 𝑝 |𝑥) = 𝑥ℎ𝑝−ℎ3−ℎ4

∑︁
{𝑘}
𝛽
𝑝{𝑘}
34 𝑥𝐾

⟨ℎ1 |𝜙2(1)𝐿−𝑘1 · · · 𝐿−𝑘𝑁 |ℎ𝑝⟩
⟨ℎ1 |𝜙2(1) |ℎ𝑝⟩

(6.125)

where we have written (𝐶 𝑝12)
1/2 as ⟨ℎ1 |𝜙2(1) |ℎ𝑝⟩ from the previous section.

4. With this organization of terms, we write the final form of the correlator:

𝐺21
34 (𝑥, 𝑥) =

∑︁
𝑝

𝐶
𝑝

34𝐶
𝑝

12F
2𝑙

34 ( 𝑝 |𝑥)F̄
2𝑙

34 ( 𝑝 |𝑥) (6.126)

5. The functions 𝐴𝑗 𝑖
𝑘𝑙
( 𝑝 |𝑥, 𝑥) are called partial waves for their analogy with the scattering

diagrams used in perturbative QFTs. Using operator algebra between the states (0, 𝑥)

and (1,∞) amounts to summing over the intermediate conformal families analogous

to the intermediate states formed during the scattering of fields between such states.

We can diagrammatically represent this function as follows:

But note that there is no actual scattering process taking place in CFTs since there is no

notion of particles or wave packets separated by some distance due to scale invariance.
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Figure 6.1: Diagrammatic Representation of partial waves 𝐴𝑗 𝑖
𝑘𝑙
( 𝑝 |𝑥, 𝑥 analogous to scatter-

ing.

6. The functionsF 𝑗 𝑖

𝑘𝑙
are called conformal blocks. These are the terms of the 4-point func-

tions, which are completely determined by the symmetries. Using the Virasoro alge-

bra, we can compute the numerator of 3.110, which also eventually cancels out the

𝐶
𝑝

12 term from the denominator. The coefficients 𝛽 are already determined using the

operator algebra.

7. The three-point correlators remain the only unknown parts of the correlator. There is

another lurking symmetry lying around in this calculation. We could choose to trans-

form the points differently, which amounts to ordering the fields in the correlator in a

different way - this is analogous to the crossing symmetry in the scattering terminology.

Using this procedure, one can then obtain relations between the different 𝐺𝑗 𝑖
𝑘𝑙

s, con-

straining the unknown three-point coefficients and conformal dimensions. In certain

classes of 2D CFTS (minimal models) where there is a finite number of conformal

families, this procedure of constraining the parameters by crossing symmetry solves

the parameters completely, given the conformal blocks are already computed explic-

itly by conformal invariance. Such models are thus completely solved. This procedure

is called the Conformal Bootstrap. For example, consider the above 4-point correlator:

we can use global transformations to instead make 𝑧1 = ∞, 𝑧2 = 0, 𝑧4 = 1 and 𝑧4 is

fixed by the cross-ratio as 1− 𝑥. This amounts to interchanging the fields 𝜙2 and 𝜙4 in
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Figure 6.2: Crossing symmetry of 4-point correlators in the diagrammatic language.

the expression6.119 when writing the correlator in terms of𝐺. There is also a change

in the argument of𝐺, 𝑥 → 1 − 𝑥. So we write,

𝐺21
34 (𝑥, 𝑥) = 𝐺

41
32 (1 − 𝑥, 1 − 𝑥) (6.127)

Similarly if we interchange 𝜙1 and 𝜙4:

𝐺21
34 (𝑥, 𝑥) =

1
𝑥2ℎ3𝑥2ℎ̄3

𝐺24
31 (1/𝑥, 1/𝑥) (6.128)

One can express this crossing symmetry in the diagrammatic language again: for ex-

ample, the constraint 6.127 gives,∑︁
𝑝

𝐶
𝑝

21𝐶
𝑝

34F
21

34 ( 𝑝 |𝑥)F̄ 21
34 ( 𝑝 |𝑥) =

∑︁
𝑞

𝐶
𝑞

41𝐶
𝑞

32F
41

32 (𝑞 |1 − 𝑥)F̄ 41
32 (𝑞 |1 − 𝑥) (6.129)
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Chapter 7

Virasoro Symmetry in AdS
For an 𝐴𝑑𝑆3, we have a 2-dimensional conformal boundary. And in 2 dimensions, we saw

that the conformal group is an infinite-dimensional Virasoro group. One of the key as-

sertions of AdS/CFT correspondence is that the isometry group of AdS is identical to the

conformal group on the boundary of AdS. In this short section, we will describe how this

identification can be realized between a finite-dimensional isometry group and an infinite-

dimensional conformal group in the case of 𝐴𝑑𝑆3. The isometries of 𝐴𝑑𝑆3 are just the group

elements of 𝑆𝑂 (2, 2) = 𝑆𝐿(2,R)× 𝑆𝐿(2,R). We are familiar with the form of the 𝑆𝐿(2,R)

elements, these are just

𝑓 (𝑥) = 𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑 ∈ 𝑆𝐿(2,R) (7.1)

which have a vanishing Schwarzian derivative,

{
𝑓 , 𝑥+

}
=
𝑓 ′′′

𝑓 ′
− 3

2

(
𝑓 ′′

𝑓 ′

)2
= 0 (7.2)

Recall that in the Poincaré coordinates, the metric of 𝐴𝑑𝑆3 reads

𝑑𝑠2 =
𝐿2

𝑤2

(
−𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑤2

)
(7.3)

with the light cone coordinate, 𝑥± = 𝑥 ± 𝑡 , this becomes

𝑑𝑠2 =
𝐿2

𝑤2

(
𝑑𝑥+𝑑𝑥− + 𝑑𝑤2

)
(7.4)

The effect of the isometries on the coordinates can be found to be
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7 Virasoro Symmetry in AdS

𝑥+ → 𝑓 (𝑥+), (7.5)

𝑥− → 𝑥− − 1
2𝑤

2 𝑓
′′

𝑓 ′
, (7.6)

𝑤 → 𝑤

√︃
𝑓 ′. (7.7)

All the derivatives of 𝑓 are taken with 𝑥+. The metric then behaves as,

𝑑𝑠2 =
𝐿2

𝑤2 𝑓 ′
©«𝑓 ′𝑑𝑥+

[
𝑑𝑥− − 𝑤𝑑𝑤

𝑓 ′′

𝑓 ′
− 1

2𝑤
2 𝑓

′′′

𝑓 ′
𝑑𝑥− + 1

2𝑤
2
(
𝑓 ′′

𝑓 ′

)2
𝑑𝑥−

]
+

(
𝑑𝑤

√︃
𝑓 ′ +

𝑤𝑓 ′′

2
√︁
𝑓 ′𝑑𝑥+

)2ª®¬
(7.8)

=
𝐿2

𝑤2

(
𝑑𝑥+𝑑𝑥− + 𝐹 (𝑥+)𝑤2𝑑𝑥+2 + 𝑑𝑤2

)
(7.9)

with 𝐹 (𝑥+) = −1
2
{
𝑓 , 𝑥+

}
, which clearly vanishes for 𝑓 ∈ 𝑆𝐿(2,R).

Now, if the function 𝑓 is made arbitrary, i.e. 𝐹 (𝑥+) doesn’t vanish, we see that the met-

ric 7.9 is modified in the bulk of 𝐴𝑑𝑆 , but its asymptotic form (𝑤 → 0), is still invariant.

This shows that the asymptotic isometry group of 𝐴𝑑𝑆3 is just the conformal group of the

boundary (which is 1+1 dimensional).

So, to summarize:

• The isometries of 𝐴𝑑𝑆3 given by 𝑓 ∈ 𝑆𝐿(2,R) act on the boundary as the global

conformal group of 1+1 Minknowski Space.

• The asymptotic structure-preserving isometries of 𝐴𝑑𝑆3 are given by arbitrary func-

tions 𝑓 which act on the Bulk via 7.5 - 7.7 and act on the boundary as the local con-

formal group of 2D Minkowski Space. A further analysis shows that the modes of the

generators of the above functions indeed obey the Virasoro algebra. This is expected

because we have already seen how arbitrary holomorphic functions in 2 dimensions

can be conformal transformations. Using light cone coordinates, the transformation
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7 Virasoro Symmetry in AdS

𝑥+ → 𝑓 (𝑥+) is indeed analogous to performing conformal transformations on a com-

plex plane.
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Chapter 8

The AdS/CFT Correspondence
We now finally connect a theory in AdS to a CFT on the boundary.This can be done in

two equivalent prescriptions. Euclidean as well as Lorentzian cases of AdS (AdS/CFT) are

discussed.

8.1 The GKP-W Prescription

Discussed first in [11] and in [18], the following correspondence has been proposed in the

Euclidean signature of AdS.

1. CFT defoormations: The field 𝜙𝑖 which is obtained via 𝜙(𝑥) → 𝜙𝑖 (𝑥′) as the bound-

ary value of bulk fields act as the sources for the boundary theory by coupling to the

conformal fieldsO𝑖 (thus deforming the free theory) via
∫
𝜕
𝜙◦O adding to the free CFT

action. This will basically be fed to the generating functional as the current term.

2. CFT Generating Functional: We define the generating functional for the CFT corre-

lators through,

𝑍
(
{𝜙𝑖}

)
=

∑︁
𝑞

1
𝑞!

∫ 𝑞∏
𝑘=1
𝑑𝑑𝑥𝑘 ⟨O1(𝑥1) · · · O𝑞 (𝑥𝑞)⟩ 𝜙1(𝑥1) · · · 𝜙𝑞 (𝑥𝑞)

= ⟨exp
∫
𝜕

∑︁
𝑖

𝜙𝑖O𝑖⟩ (8.1)

n-point CFT correlators are then obtained via,

⟨O1 . . .O𝑛⟩ =
∑︁
𝑖

𝜕

𝜕𝜙𝑖 (𝑥𝑖)
· · · 𝜕

𝜕𝜙𝑛(𝑥𝑛)
𝑍 [{𝜙𝑖}] (8.2)
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8 The AdS/CFT Correspondence

We get back the free CFT correlators if we take the functional derivatives at 𝜙𝑖 = 0.

The deformed theory will be a result of non-trivial boundary sources calculated from

the bulk fields.

3. AdS Generating Functional: In the bulk we consider the supergravity/string theory

partition function with the boundary condition, 𝜙 ∞−→ 𝜙. In the classical approxima-

tion of supergravity we take,

𝑍𝑆 [𝜙] = exp
(
−𝐼𝑆

(
𝜙
) )

(8.3)

where the action 𝐼𝑆 (𝜙) is computed over the classical solution 𝜙 obtained by extending

the solution 𝜙 on the boundary to the bulk. To do this we first analyse the classical

equation of motion for boundary behavior, fix the boundary behavior and compute

the bulk-boundary propagator (a Green’s function of EOM) to extend the solution.

The subtlety in Lorentzian AdS/CFT has to do with the boundary behavior of the

bulk fields, as we will see.

4. The Correspondence: The coupling hypothesis is already the part of correspondence,

the follows stitches the above things together,

𝑍 [𝜙]𝐶𝐹𝑇 = ⟨exp
(∫
𝜕

𝜙O
)
⟩ = exp

(
−𝐼𝑆

(
𝜙
) )

= 𝑍𝑆 [𝜙] (8.4)

Using this prescription we now compute free CFT correlators for simple AdS bulk the-

ories.

8.2 Massless Scalar Field

Start with the action of free massless scalar field on 𝐴𝑑𝑆𝑑+1,

𝐼 (𝜙) = 1
2

∫
𝐴𝑑𝑆𝑑+1

𝑑𝑑+1𝑥
√
𝑔𝜕𝜇𝜙𝜕

𝜇𝜙. (8.5)
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8 The AdS/CFT Correspondence

The equation of motion is,

1
√
𝑔
𝜕𝜇

(√
𝑔𝜕 𝜇𝜙(𝑥)

)
= 0 (8.6)

Behavior of Solutions at the boundary:

Claim 8.2.1. In the case of Euclidean AdS, any function 𝜙(Ω) on the boundary of 𝐴𝑑𝑆𝑑+1

can be uniquely extended to a function 𝜙(𝑥) in the bulk.

Proof. Suppose 𝜙1(𝑥) and 𝜙2(𝑥) be two solutions of equation 8.6 such that their boundary

values match. Then 𝛿𝜙(𝑥) = 𝜙1(𝑥) − 𝜙2(𝑥) vanishes on the boundary and thus an equally

good but square integrable solution. □

Bulk-Boundary Propagator:

We now solve for the propagator, 𝐾 (𝑥, 𝑥′) satisfying 8.6 for all 𝑥 ∉ 𝜕 and behaving like

a 𝛿 -function when 𝑥 ∈ 𝜕 and 𝑥 → 𝑥′. Using this propagator we can then extend the definite

boundary solution to the bulk one as,

𝜙(𝑥) =
∫
𝜕

𝑑𝑑𝑥′𝐾 (𝑥, 𝑥′)𝜙◦(𝑥′). (8.7)

We will use the poincare coordinates for the Euclidean AdS,

𝑑𝑠2 =
1(
𝑥0)2

𝑑∑︁
𝜇=0

(𝑑𝑥𝜇)2
. (8.8)

Where 𝑥0 > 0. the boundary is given by 𝑥0 = 0, the point at infinity, 𝑥0 = ∞ is a single

point (𝑑𝑠2 → 0). In these coordinates,

𝑔𝜇𝜈 =
1(
𝑥0)2 𝛿𝜇𝜈 , 𝑔 𝜇𝜈 =

(
𝑥0

)2
𝛿 𝜇𝜈 ,

√
𝑔 =

1(
𝑥0)𝑑+1 . (8.9)

Following Witten’s, we will compute the propagator just by symmetry arguments. We

start with the boundary point at the infinity, i.e 𝑥′0 = 0, 𝑥′ → ∞. Inheriting the symmetry
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8 The AdS/CFT Correspondence

from the metric and the boundary point, we expect𝐾 to be independent of 𝑥𝑖 and a function

of 𝑥0 only,

𝜕0

(
1(

𝑥0)𝑑+1

)
𝜕0𝐾 (𝑥0) = 0 (8.10)

An ansatz of 𝐾 (𝑥0) = 𝑐
(
𝑥0) 𝑝 quickly yields, 𝑐𝑥𝑑 as the relevant solution. We can trans-

form the above 𝐾 ≡ 𝐾
(
𝑥0, 𝑥 𝑖 , 𝑃

)
to a finite 𝑥′ via an AdS Isometry,

𝑥𝜇 → 𝑧𝜇 ≡ 𝑥𝜇

(𝑥0)2 + ®𝑥2 , 𝜇 = 0, ..., 𝑛 (8.11)

This gives,

𝐾 (𝑥0, ®𝑥; 𝑃 ) → 𝐾 (𝑥0, ®𝑥; ®0) = 𝑐 (𝑥0)𝑛
((𝑥0)2 + ®𝑥2)𝑛

(8.12)

From the translation invariance on the boundary, we get the 𝛿 -function at 𝑥0 = 0, 𝑥 = 𝑥′

as,

𝐾 (𝑥0, ®𝑥; ®𝑥′) = 𝑐 (𝑥0)𝑛
((𝑥0)2 + ( ®𝑥 − ®𝑥′)2)𝑛

(8.13)

It is good to note the following result,

Proposition 8.2.2. A function of the form,

𝜖𝛽

(𝜖2 + ®𝑥2) 𝛼
(8.14)

is a 𝛿 -function if and only if, 0 < 𝛽 = 2𝛼 − 𝑑.

Bulk Solution and the Classical Action:

We thus have,

𝜙(𝑥0, 𝑥) = 𝑐
∫
𝑑𝑑𝑥′

(
𝑥0)𝑑( (

𝑥0)2 + (𝑥 − 𝑥′)2
)𝑑 𝜙◦(𝑥′). (8.15)
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8 The AdS/CFT Correspondence

We now evaluate the classical action,

𝑆𝑠𝑢 𝑔𝑟𝑎 [𝜙(𝜙0)] =
1
2

∫
𝑑𝑑+1𝑥

√
𝑔𝜕𝜇𝜙𝜕

𝜇𝜙

=

∫
𝑑𝑑+1𝑥

1
2 𝜕𝜇

(√
𝑔𝜙𝜕 𝜇𝜙

)
− 1

2

∫
𝑑𝑑+1𝑥𝜙𝜕𝜇

(√
𝑔𝜕 𝜇𝜙

)
= lim
𝜖→0

∫
𝑥0=𝜖

𝑑𝑑𝑥
√
𝑔𝜙𝜕0𝜙

= −1
2 𝑐𝑑

∫
𝑑𝑑𝑥𝑑𝑑𝑥′

𝜙◦(𝑥′)𝜙◦(𝑥)
(𝑥 − 𝑥′)2𝑑 (8.16)

We thus have,

𝑍 [𝜙◦]𝐶𝐹𝑇 = exp
(

1
2 𝑐𝑑

∫
𝑑𝑑𝑥𝑑𝑑𝑥′

𝜙◦(𝑥′)𝜙◦(𝑥)
(𝑥 − 𝑥′)2𝑑

)
(8.17)

And the free 2-point correlator becomes,

⟨O(𝑥)O(𝑥′)⟩ = 𝛿

𝛿𝜙(𝑥)
𝛿

𝛿𝜙(𝑥′)

[
exp

(
1
2 𝑐𝑑

∫
𝑑𝑑𝑦𝑑𝑑𝑦′

𝜙◦(�̄�′)𝜙◦(�̄�)(
�̄� − �̄�′

)2𝑑

)]
∼ 1

(𝑥 − 𝑥′)2𝑑 (8.18)

which is precisely the correlator of conformal fields of dimension 𝑑. Thus a free scalar field

couples to a conformal field of dimension 𝑑, which could be directly predicted from the

coupling
∫
𝑑𝑑𝑥𝜙◦O for conformal invariance.

8.3 U(1) Gauge Field

The calculation is exactly the same. We note a few critical steps.

The bulk gauge field 𝐴(𝑥0, 𝑥) (a 1-form) are computed with the boundary value 𝐴◦(𝑥′) =

𝑎𝑖 (𝑥′)𝑑𝑥 𝑖 (a 1-form on the boundary). Starting with the boundary point at infintiy 𝑃 , we

again take the propagator to be dependent only on 𝑥0 in the bulk. If for some 𝑖 ≥ 1,
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8 The AdS/CFT Correspondence

𝐾 (𝑖) (𝑥0, 𝑥; 𝑃 ) = 𝑓 (𝑥0)𝑑𝑥 𝑖 , we find the functional form of 𝑓 (𝑥0) using the EOM. The

same symmetry arguments will yield the final form of the bulk-boundary propagator. The

bulk solution is then computed by extending each 𝑎𝑖 (𝑥) to the bulk using 𝐾 (𝑖) .

𝐴

(
𝑥0, 𝑥

)
=

∫
𝑑𝑑𝑥′

∑︁
𝑖

𝐾 (𝑖)𝑎𝑖 (𝑥′). (8.19)

The end result is that the𝑈 (1) gauge field couples to conformal field of dimensions 𝑑−1.

This also follows from the fact that gauge fields are coordnate independent by defnition and

are AdS Isometry scalars. So the component functions of the gauge field have a conformal

dimension 1 on the boundary. Thus coupling to 𝑑 − 1 dimensional conformal fields.

8.4 Massive Scalar Field

The action for massive scalar field in AdS is,

𝐼 (𝜙) = 1
2

∫
𝑑𝑑+1𝑥

√
𝑔

(
𝜕𝜇𝜙𝜕

𝜇𝜙 +𝑚2𝜙
)
. (8.20)

Boundary Behavior of solutions:

The boundary behavior here is a bit more subtle compared to the massless case. To anal-

yse the solutions it is fruitful to work in the hyperbolic coordinates. Consider the following

metric on AdS,

𝑑𝑠2 = 𝑑𝑦2 + sinh2
𝑦𝑑Ω2

𝑑
(8.21)

where 0 ≤ 𝑦 < ∞. Note that 𝑑𝑒𝑡 𝑔 = sin 𝑔2𝑑𝑦𝑑𝑒𝑡 𝛾 , where 𝛾 is the metric on 𝑆𝑑. THe

laplacian can be splitted as follows,

Δ =
1

sinh𝑑 𝑦
𝜕

𝜕𝑦
sinh𝑑 𝑦 𝜕

𝜕𝑦
− 𝐿2

sinh2
𝑦

(8.22)
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8 The AdS/CFT Correspondence

where 𝐿2 is the laplacian on the sphere. For large 𝑦 i.e. on the boundary, the EOM reads,

𝑒−𝑛𝑦
𝑑

𝑑𝑦

(
𝑒𝑛𝑦

𝑑

𝑑𝑦
𝜙

)
= 𝑚2𝜙. (8.23)

An ansatz 𝑒𝜆𝑦 works as the solution iff, 𝜆 (𝜆 + 𝑑) = 𝑚2. With 𝜆+, 𝜆− being the solutions

of the quadratic equation, the behavior of the field 𝜙 near the boundary is dominated by

𝑒𝜆+𝑦 = (𝑒−𝑦)−𝜆+ , the contribution from the greater root.

Proposition 8.4.1. 𝑒−𝑦 was an arbitrary ansatz. For any function 𝑓 with 1st order zero (sim-

ple zero) on the boundary, 𝜙(𝑦, 𝑥) ∼
(
𝑓 (𝑦)

)−𝜆+ 𝜙◦(𝑥) can be taken as the boundary behavior.

But note that the metric of the boundary is not fixed, there is a conformal class of metrics.

It can be induced by again a function with simple zero on the boundary (multiplied to the

bulk metric as a conformal factor). We thus have the following consequence,

Corollary 8.4.2. The function 𝜙◦(𝑥) (the coefficient of a non-normalizable mode) is then

arbitrary due to the freedom in 𝑓 i.e 𝑓 → 𝑒𝑤(𝑥) 𝑓 . It’s a conformal field of dimension −𝜆+

coupling to aconformal field of dimension 𝑑 + 𝜆+ in the boundary CFT.

This follows from noting the behavior of conformal fields under a conformal transfor-

mation, 𝑑𝑠2 → Λ2𝑑𝑠2 =⇒ 𝜙 → Λ
Δ
2 𝜙. We then follow the same procedure as before to

compute the bulk-boundary propagator and the bulk field respecting the above boundary

behavior. We end up with the result that the massive scalar fields couple to conformal fields

OΔ with conformal dimension,

Δ =
1
2

(
𝑑 +

√︁
𝑑2 + 4𝑚2

)
(8.24)

We can generalize these discussions to other fields as well, say for any 𝑝− 𝑓 𝑜𝑟𝑚. Massless

𝑝 − 𝑓 𝑜𝑟𝑚𝑠 have component fields with conformal dimension 𝑝, thus coupling to confor-

mal operators of dimension Δ = 𝑑 − 𝑝. A massive p-form would couple to an operator
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8 The AdS/CFT Correspondence

with dimension Δ = 𝑑 + 𝜆+ − 𝑝, where 𝜆+ is the greater solution of 𝜆 (𝑑 + 𝜆) = 𝑚2. So,(
Δ − 𝑑 + 𝑝

) (
Δ + 𝑝

)
= 𝑚2,

Δ =
1
2

(
𝑑 +

√︃
𝑑2 + 4𝑚2 − 4𝑑𝑝 + 𝑝2

)
. (8.25)

8.5 Lorentzian AdS/CFT

In this section, we will briefly summarize the work of [3] on Lorentzian AdS/CFT corre-

spondence. In Euclidean case we were able to uniquely extend the boundary solution to the

bulk, and then computed the classical action which gave away the CFT correlators through

the correspondence 8.4. In Lorentzian signature, the important fact is that there exist solu-

tions of the wave equations which are normalizable and thus which fall off faster near the

boundary than the non-normalizable modes and thus not effecting the boundary behavior.

This creates an ambiguity in the bulk solution through which we relate to the boundary. The

major claim of the work cited is that the non-normalizable solutions are to be seen as the non-

fluctuating modes which dictate the boundary behavior, and importantly which couple to

the CFT operators - deforming the boundary theory. The normalizable modes on the other

hand are the fluctuaing modes in the bulk - which could be quantized. These correspond to

the states in the CFT as well.

Proposition 8.5.1. The solutions of wave equations in Lorentzian signature have vast possi-

bilities of solutions. We extract the fluctuating solution to relate to the states in the boundary

theory and the non-fluctiating mode as the boundary behavior which couple to the CFT oper-

ators. In particular non-flucutaing/non-normalizable modes correspon to the deformations of

the CFT theory and the normalizable modes contribute to the VEV of the CFT operators due to

an excited state.

We can illustrate this in the scalar field case as follows

161
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In Euclidean case the bulk solution read,

𝜙(𝑥0, 𝑥) =
∫
𝜕

𝐾

(
𝑥0, 𝑥, 𝑥′

)
𝜙𝑏 (𝑥′) (8.26)

In the Lorentzian case there is also a normalizable mode,

𝜙 = 𝜙𝑛 +
∫
𝜕

𝐾𝜙𝑏 = 𝜙𝑛 + 𝜙𝑛𝑛 (8.27)

We can compute the classical action (8.16). Then the relevant term that contributes to

the 1 point function (say) is given by the functional derivative 𝛿 𝑆
𝛿𝜙

=
(
𝑥0)−𝑑+1 𝜕𝜙

𝜕𝑥0 , which

from above equation 8.27 reads (taking the boundary limit 𝜙𝑛 → (𝑥0)𝑑𝜙𝑛),

𝜕𝜙

𝜕𝑥0 = 𝑑(𝑥0)𝑑−1𝜙𝑛(𝑥) + 𝑐𝑑(𝑥0)𝑑−1
∫
𝑑𝑑𝑥′

𝜙𝑏 (𝑥′)
(𝑥 − 𝑥′)2𝑑 (8.28)

So,

⟨𝜙𝑛 | O|𝜙𝑛⟩ = 𝑑𝜙𝑛(𝑥) + 𝑐𝑑
∫
𝑑𝑑𝑥′

𝜙𝑏 (𝑥′)
(𝑥 − 𝑥′)2𝑑 (8.29)

We see that there is an additional contribution from the normalizable mode.

Proposition 8.5.2. The boundary behaviour of the classical EOM of a scalar field 𝜙 in the

AdS as,

𝜙 ∼ 𝛼(𝑥0)𝑑−Δ + 𝛽(𝑥0)Δ (8.30)

in terms of the non-normalizable (𝛼 piece) and the normalizable (𝛽 piece) modes. Then pre-

scription of correspondence in the lorentizan AdS is that, non-normalizable modes are mapped

to the sources on the boundary deforming the CFT Hamiltonian as,

𝐻 = 𝐻𝐶𝐹𝑇 + 𝛼O (8.31)

162



8 The AdS/CFT Correspondence

and the normalizable modes are mapped to the VEVs or states of the boundary CFT,

⟨𝛽 |O|𝛽⟩ ∼ 𝛽 + (𝛼 𝑐𝑜𝑛𝑡𝑟 𝑖𝑏𝑢𝑡 𝑖𝑜𝑛) (8.32)

Turning off the normalizable mode, we get the VEV of the dual operator and a non-

trivial mode maps to an excited state on the boundary. The map from the bulk normalizable

(fluctuating) modes to the states in the boundary CFT can be explicilty realized by looking at

the representations of 𝑆𝐿 (2,R)×𝑆𝐿 (2,R) which is the conformal algebra of the boundary

as well the isometry algebra of the bulk. We find that the normalziable modes can be realised

as the unitary representations where the non-nromalizable modes as the non-unitary repre-

sentations. The details of behavior of normalizable and non-normalizable solutions near the

boundary is explictly studied in the reference along with their belonging to different repre-

sentations.

8.6 BDHM Dictionary

There is a second dictionary for the correspondence. Instead of letting the sources couple

to the boundary CFT operators and computing the correlations via 8.4, we can extrapolate

the correlation functions of bulk fields to the boundary by suitably compensating the decay

behavior of the bulk fields.

For discussing a theory at infinity, we want to take a 𝑥 → 𝜕 limit to the AdS field 𝜙(𝑥).

And for a normalizable field, we know that 𝜙 → 0 as 𝑥 → ∞. But note that when there

are finite energies involved in a QFT, the fields have a universal behavior near infinity. For

example, the massless fields fall off as 1
𝑟

and the massive ones decay like 𝑒−𝑚𝑟 . A finite non-

vanishing field at infinity can then be obtained from these fields by compensating the decay

with a multiplicative factor and then taking the asymptotic limit. This is already clear from

the discussion on the behavior of fields in Lorentzian AdS (see 8.30).
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Recall the discussion on approaching the boundary from section 3.6. Consider Eu-

clidean AdS and approach the boundary as,

𝜌 (𝜖, 𝑡) = 𝜋2 − 𝜖𝑒−𝑡 (8.33)

which gives a Euclidean Flat space metric on the boundary. If 𝜙(𝑥) is the field of a scalar

particle in AdS, we define the operator dual to 𝜙 on the boundary as,

O (𝑡,Ω) = lim
𝜖→0

𝜙(𝑡, 𝜌(𝜖, 𝑡),Ω
𝜖Δ

(8.34)

where Δ is the power involved in the boundary behavior of field 𝜙. The power Δ ensures

the conformal symmetry (AdS Isometry) is respected. Let’s call this operator, holographic

dual to 𝜙.

Proposition 8.6.1. Holographic dual Operator O (𝑡,Ω) has the correlators of a CFT on the

Euclidean space.

One can consider a massive/massless scalar theory in AdS to check this. In that case, it

is possible to explicitly solve for the fields using hypergeometric functions. We expect that

under the boundary limit, factored with a suitable conformal dimension, the calculation for

the CFT correlators simplifies drastically via the bulk theory.

So, the alternative prescription for AdS/CFT correspondence is that,

⟨O1(𝑥1) · · · O𝑛(𝑥𝑛)⟩ = lim
𝜖→0

𝜖−𝑛Δ ⟨𝜙1(𝑥1) · · · 𝜙𝑛(𝑥𝑛)⟩ (8.35)

where 𝜙1, ..., 𝜙𝑛 are bulk AdS fields corresponding to a gravity theory with characteristic

conformal dimension Δ.
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Chapter 9

Conclusion: AdS/CFT and Geometry
We are now equipped with the basic conformal invariants, 𝑡𝑟 (𝑊 ⊗· · ·⊗𝑊 ). The procedure

of finding other conformal invariants is, however, not yet clear. In the Riemannian case, due

to a classical theorem from Weyl (ala Ricci Calculus where we take covariant derivatives),

any Riemannian invariant can be written as a combination of 𝑡𝑟 (∇𝑅 ⊗ · · · ⊗ ∇𝑅).

Question 9.0.1. How to produce conformal invariants? Can we write an elementary formula

like in the Riemannian case that gives us all the conformal invariants?

This question was partially answered by Fefferman and Graham in [9]. In doing so, they

have laid out a foundational theory for conformal geometry and also AdS/CFT which was

yet to be born. We will only sketch the ideas of these developments and connections in this

chapter.

Consider a Riemannian manifold (𝑀, 𝑔). We formally define (scalar, local) conformal

invariants as polynomials in 𝑔𝑖𝑗 and 𝜕𝛼 𝑔𝑖𝑗 satisfying the following:

1. If 𝑔 and 𝑔′ are isometric, then 𝑃 ( 𝑔) = 𝑃 ( 𝑔′).

2. If 𝑔 = 𝜆(𝑥) 𝑔′ for a smooth positive function 𝜆, then 𝑃 ( 𝑔) = 𝜆w𝑃 ( 𝑔′) for some

power or weight 𝑤.

This is reminiscent of the conformal fields in a CFT! We indeed wanted fields symmet-

ric/covariant (or as we define above with weights - invariant) under conformal transforma-

tions.

Conformal boundary or conformal infinity can also be formally defined as:
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9 Conclusion: AdS/CFT and Geometry

Definition 9.0.1 (Conformal Infinity). Let 𝑀 be a manifold with boundary and suppose

that a conformal structure [ 𝑔] is given on 𝜕𝑀 . Let 𝑓 ∈ 𝐶∞(�̄� and 𝑓 > 0 in𝑀 , 𝑓 = 0, 𝑑𝑓 ≠

0 in 𝜕𝑀 . Then a Riemannian metric 𝑔+ on 𝑀 ∼ 𝜕𝑀 is said to have [ 𝑔] as conformal

infinity if for some number 𝑘 > 0, 𝑓 𝑘 𝑔+ has a smooth extension to �̄�, and when restricted to

𝑇 𝜕𝑀 , 𝑓 𝑘 𝑔+ ∈ [ 𝑔]. This is independent of the choice of the function 𝑓 .

9.1 The Ambient Metric

The work of [9] was motivated by the following matching between the symmetry groups of

manifolds.

Motivation. The isometries of Lorentzian𝑅𝑛+1,1 act conformally on the Sphere 𝑆𝑛: Riemann

invariants of 𝑅𝑛+1,1 give the conformal invariants of 𝑆𝑛.

This is because one can re-write sphere in projective coordinates ,

𝐺 :
𝑛+1∑︁
𝑖=1
𝑥2
𝑖 − 1 = 0

𝑥𝑘=
𝜉𝑘
𝜉0−→ �̃� :

𝑛+1∑︁
𝑖=1
𝜉 2
𝑘
− 𝜉 2

0 = 0.

The metric on �̃� of the Lorentzian type,

�̃� =
𝑛+1∑︁
𝑖=1
𝑑𝜉 2
𝑘
− 𝑑𝜉 2

0

restricts to the sphere𝐺 as,

�̃�𝐺 = 𝜉 2
0

𝑛+1∑︁
𝑖=1
𝑑𝑥2
𝑖 .

Clearly, the metric on 𝑆𝑛 is affected by a conformal factor when the metric �̃� is preserved

by the isometries of �̃�. FG showed that one can always construct such an ambient metric -

the restriction of which onto the conformal manifold is unique and given by a formal taylor-

series like expansion. It is also shown that, not only an ambient Lorentz type, but equiva-

lently an ambient Poincaré metric on a manifold of one dimension higher can be constructed
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whose isometries again act conformally on the embedded manifold. This is precisely the sit-

uation in AdS. The isometries of the bulk act conformally on the boundary manifold which

has a conformal structure. So, one gets the conformal invariants for the boundary metric

by constructing Riemann invariants of an ambient/bulk metric. We state here the result for

Poincaré type ambient metric which is directly related to AdS/CFT.

Theorem 9.1.1 (Fefferman-Graham). Let𝑀 be a n-manifold with conformal structure [ 𝑔].

And 𝑀+ = 𝑀 × [0, 1] where 𝑀 ∼ 𝜕𝑀+ = 𝑀 × {0}. A metric 𝑔+ satisfying

a) 𝑔+ has [g] as conformal infinity,

b) 𝑅𝑖𝑐 ( 𝑔+) = −𝑛𝑔+

can be written in certain coordinates (𝑥1, . . . , 𝑥𝑛, 𝑟) as:

𝑔+ = 𝑟−2
[
𝑑𝑟2 + 𝑔+𝑖𝑗 (𝑥, 𝑟)𝑑𝑥 𝑖𝑑𝑥𝑗

]
,

where 𝑟 defines 𝑀 ⊂ 𝑀+ and (𝑥1, . . . , 𝑥𝑛) forms coordinates on 𝑀 . Along with (𝑎), (𝑏) if

we further ask for: (𝑐) 𝑔+
𝑖𝑗

to be an even function with respect to variable 𝑟 , then we have the

following required results.

1. 𝑛 odd. Up to a diffeomorphism fixing 𝑀 , there is a unique formal power series solution

𝑔+ to a)-c). If [ 𝑔] is real analytic, then the power series converges so that 𝑔+ exists and

𝑟2 𝑔+ is analytic up to the boundary; written generally as,

𝑔𝑟 ∼ 𝑔(0) + 𝑟2 𝑔(2) + · · · + 𝑟𝑛−1 𝑔(𝑛−1) + 𝑟𝑛 𝑔(𝑛) + 𝑟𝑛+1 𝑔(𝑛+1) + . . .

2. 𝑛 even. There are conformal structures for which there is no formal power solution of a)-

c). However, if b) is replaced by: b’) Along 𝑀 , the components of Ric( 𝑔+) + 𝑛𝑔+ vanish

to order 𝑛 − 2, then there is a formal power series solution for 𝑔+ uniquely determined
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up to addition of terms vanishing to order 𝑛 − 2 and up to a diffeomorphism fixing 𝑀 ;

written generally as,

𝑔𝑟 ∼ 𝑔(0) + 𝑟2 𝑔(2) + · · · + 𝑟𝑛−2 𝑔(𝑛−2) + 𝑟𝑛 𝑔(𝑛) + 𝑟𝑛 log 𝑟 ℎ + 𝑟𝑛+1 𝑔(𝑛+1) + . . .

Remark. Einstein’s equation fixes the power 𝑚 related to the conformal infinity. There is a

coordinate system in which the metric 𝑔+ is Poincaré type. The normalisation𝑛 in (𝑏) is a choice

of convenience, and we are free to choose otherwise.

The formal power series can be explicitly computed using Einstein’s equations using a

representative boundary metric 𝛾 ∈ [ 𝑔]. Using this it has been proved that in odd dimen-

sions, all local scalar conformal invariants can be computed. It has also been extended to even

dimensions after a little more work.

9.2 Connection to AdS/CFT

In the context of AdS/CFT, one uses this expansion to reconstruct the bulk (asymptotically)

AdS space. The log term in even dimensions is seen to be related to the conformal anomaly

of the CFT living on the boundary [5], which vanishes in odd dimensions! This allowed for

a holographic calculation of conformal anomalies of CFTs. The idea is to consider a bulk ac-

tion of gravity, including certain boundary and counter terms. Using the Fefferman-Graham

expansion of the bulk metric, and upon a suitable regularisation (and renormalisation) pro-

cedure, the conformal anomaly was calculated [12]. On the other side of developments. The

conformal anomalies of CFTs in arbitrary dimensions are proposed to be precisely the con-

formal invariants for the given conformal structure [6].

Proposition 9.2.1 (Desser-Schwimmer). The conformal anomaly of a CFT living on a man-

ifold of dimension 𝑑 is given by a type A term, which is a topological invariant (Euler density
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9 Conclusion: AdS/CFT and Geometry

in particular), and a type B term, which is a conformal invariant:

A ∼ 𝐸(𝑑) + 𝐼(𝑑)

All other terms are local and can be cancelled using appropriate counter terms.

In proving this, Desser and Schwimmer conjectured a certain global decomposition of

conformal invariants, which, using the language of Ambient metric, was proved in a series of

papers (and a book) in mathematics literature starting from [1] with a complete proof finally

in 2012.

9.3 (Further) Directions

We end with a summary of the directions discussed in this thesis.

Figure 9.1: AdS/CFT and (Conformal) Geometry
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From the physics point of view, AdS/CFT correspondence is a powerful tool to convert

calculations on CFT, say, entanglement entropy. The basic (holographic) idea is to consider

different kinds of perturbations to the bulk theory, viz., perturbations to the bulk metric and

through the two prescription deuce how these perturbations couple/define the conformal

operators on the boundary.

For example, consider the following general scalar, vector and tensor perturbation to the

𝐴𝑑𝑆3 ,

𝑑𝑠2 = 𝑈 2 [−𝑑𝑡2 + (𝑑𝑥)2] 𝑑𝑈
2

𝑈 2 + 𝑑Ω2
3

+
[
𝑇

𝑈 𝑛𝑡
(𝑑𝑡 − 𝑑𝑥)2 + 𝑉

𝑈 𝑛𝑣
(𝑑𝑡 − 𝑑𝑥)𝑑𝜃 + 𝑆

𝑈 𝑛𝑠
𝑑𝜃2

]
.

Note that, 𝑈 = 1
𝑥0 gives back the Poincaré patch coordinates on the free AdS. From the

discussion in section 8.4 we note that the massive scalar fields in 𝐴𝑑𝑆3 couple to a conformal

field of dimension Δ = 1 +
√

1 +𝑚2. Similarly by a suitable analysis of vector and tensor

fields starting from their actions, one finds the corresponding operators of 𝐶𝐹𝑇2. Using

this setup one can ask many questions about a CFT in lower dimensions, by perturbating the

bulk theory appropriately. For example, one can compute novel things using the framework

of Holographic Entanglement Entropy introduced in [17].

From the point of view of Mathematics, conformal geometry is a rich field of research.

There have been large efforts to develop a more nataural way to do it. Like Ricci calculus

and Riemann Connections, there is a conformally covariant way to take the derivatives via

tractor1 connections. Knowing the invariants of a structure is a preliminary and crucial step

to understand the structure further. To produce conformal invariants (scalars, operators. . . )

more naturally using the tractor calculus has been a major focus of conformal geometry.

There is a notion of Q-curvataure which is anologous to the scalar Riemannian curvature.

More broadly conformal geometry falls into a larger study of parabolic geometry and cartan
1Tractor is a portmanteau of Tracy Thomas and twistor.
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9 Conclusion: AdS/CFT and Geometry

connections. Some of the current problems include generalization of the Yamabe problem,

which asserts the existence of a constant scalar curvature metric that is conformal to a given

metric. It occurs in the attempts to formulate higher dimensional uniformization theorem

using constant scalar curvataure metrics. Conformal Geometry also plays an important role

in twistor theory approach to quantum gravity.
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Appendix A

Classical Symmetries in QFT
We discuss a general Theory of Symmetries and Conservation Laws in QFT. Consider a gen-

eral action:

𝑆 =

∫
𝑑𝑑𝑥L

(
𝜙, 𝜕𝜇𝜙

)
(A.1)

We study the transformations affecting both positions and fields (active point of view):

𝑥 → 𝑥′ (A.2)

𝜙(𝑥) → 𝜙′ (𝑥′) ≡ F
(
𝜙(𝑥)

)
(A.3)

Under this transformation, the action reads

𝑆′ =

∫
𝑑𝑑𝑥′L

(
𝜙′ (𝑥′) , 𝜕′𝜇𝜙′(𝑥′)

)
(A.4)

=

∫
𝑑𝑑𝑥 | 𝜕𝑥

′

𝜕𝑥
| L

(
F (𝜙(𝑥)),

(
𝜕𝑥𝜈

𝜕𝑥′𝜇
𝜕𝑣F (𝜙(𝑥))

))
(A.5)

Examples:

1. Translation:

𝑥′ = 𝑥 + 𝑎 (A.6)

𝜙′(𝑥 + 𝑎) = 𝜙 (𝑥) (A.7)

𝑆′ = 𝑆. (A.8)
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2. Lorentz Transformation:

𝑥′𝜇 = Λ𝜇𝜈 𝑥𝜈 (A.9)

𝜙′(Λ𝑥) = 𝐿Λ𝜙(𝑥) (A.10)

𝐿Λ, a matrix representation of Lorentz Group on the space of fields, acts on the com-

ponents of 𝜙.

𝑆′ =

∫
𝑑𝑑𝑥L

(
𝐿Λ𝜙,Λ−1𝜕

(
𝐿Λ𝜙

) )
(A.11)

Λ as a matrix satisfies Λ𝑇 𝜂Λ = 𝜂.

For 𝐿Λ = 1 (Scalar Fields): 𝑆′ = 𝑆 if 𝜕𝜇 appears in a Lorentz invariant way in the

Lagrangian. Allowing almost two derivatives in the theory gives the following most

general form of Lagrangian.

L
(
𝜙, 𝜕𝜇𝜙

)
= 𝑓

(
𝜙
)
+ 𝑔

(
𝜙
)
𝜕𝜇𝜙𝜕

𝜇𝜙 (A.12)

3. Sclae Transformation:

𝑥′ = 𝜆𝑥 (A.13)

𝜙′ (𝜆𝑥) = 𝜆Δ𝜙 (𝑥) (A.14)

Where Δ is called the scaling dimension of the field 𝜙.

𝑆′ = 𝜆𝑑
∫
𝑑𝑑𝑥L

(
𝜆−Δ, 𝜆−1−Δ𝜕𝜇𝜙

)
(A.15)
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So, for a (massless) scalar field:

𝑆 [𝜙] =
∫
𝑑𝑑𝑥𝜕𝜇𝜙𝜕

𝜇𝜙 (A.16)

𝑆′ = 𝑆 if Δ = 𝑑
2 − 1. We are free to add any 𝜙𝑛 as long as Δ𝑛 = 𝑑 =⇒ 𝑛 = 2𝑑

(𝑑−2) ,

preserving the scale invariance. The only possibilities for 𝑛 being even and ‘ensuring

stability’ are 𝑛 = 6 when 𝑑 = 3 and 𝑛 = 4 when d = 4 i.e. 𝜙6 and 𝜙4.

4. Various transformations may be defined that only effect the field 𝜙 and not the coor-

dinates. For example:

𝜙′(𝑥) = 𝑒𝑖𝜃𝜙(𝑥) (A.17)

for a complex field. Or, more generally even,

𝜙′(𝑥) = 𝑅𝜔𝜙(𝑥) (A.18)

where𝑅𝜔 is some representation of a Lie Group parametrized by the group coordinate

𝜔.

A.1 Infinitesimal Transformations

For any general infinitesimal transformation:

𝑥′𝜇 = 𝑥𝜇 + 𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
(A.19)

𝜙′(𝑥′) = 𝜙(𝑥) + 𝜔𝑎
𝛿F
𝛿𝜔𝑎

(𝑥) (A.20)

{𝜔𝑎} - set of infinitesimal parameters.

Generator of infinitesimal transformations (of the field) - 𝐺𝑎:

−𝑖𝜔𝑎𝐺𝑎𝜙(𝑥) := 𝛿𝜔𝜙(𝑥) = 𝜙′(𝑥) − 𝜙(𝑥) (A.21)

𝑖𝜔𝑎𝐺𝑎𝜙 = 𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎
𝜕𝜇𝜙 − 𝜔𝑎

𝛿F
𝛿𝜔𝑎

(A.22)
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Examples:

1. Translation:
𝛿 𝑥𝜇

𝛿𝜔𝜈
= 𝛿

𝜇
𝜈 ; 𝛿F
𝛿𝜔𝜈

= 0. (A.23)

We thus have the generator for translations:

𝑃𝜇 = −𝑖𝜕𝜇. (A.24)

2. Lorentz Transformation: Using Λ𝜇𝜈 = 𝑥𝜇 + 𝜔
𝜇
𝜈 𝑥
𝜈 , 𝜔𝜌𝜎 = −𝜔𝜎 𝜌 in equation A.11,

𝑥′𝜇 = 𝑥𝜇 + 𝜔𝜇𝜈 𝑥𝜈 (A.25)

Expand using the basis of antisymmetric matrices 𝑀 𝜌𝜎 ( satisfies the Lorentz Lie Al-

gebra),

𝜔
𝜇
𝜈 =

1
2Ω𝜌𝜎

(
(𝑀 𝜌𝜎 )𝜇𝜈

)
(A.26)

Then,

𝛿 𝑥𝜇 =
1
2Ω𝜌𝜎 (𝑀 𝜌𝜎 )𝜇𝜈 𝑥𝜈 (A.27)

=
1
2Ω𝜌𝜎

(
𝜂 𝜌𝜇𝛿 𝜎𝜈 − 𝜂𝜎 𝜇𝛿 𝜌𝜈

)
𝑥𝜈

=
1
2Ω𝜌𝜎

(
𝜂 𝜌𝜇𝑥 𝜎 − 𝜂𝜎 𝜇𝑥 𝜌

)
𝛿 𝑥𝜇

𝛿Ω𝜌𝜎

=
1
2

(
𝜂 𝜌𝜇𝑥 𝜎 − 𝜂𝜎 𝜇𝑥 𝜌

)
. (A.28)

Also, write,

F
(
𝜙
)
= 𝐿Λ𝜙 ≈ 1 − 1

2 𝑖Ω𝜌𝜈𝑆
𝜌𝜈 . (A.29)

Where 𝑆 𝜌𝜈 is the generator of Lorentz algebra on the space of fields. Basically, it gener-

ates a Lorentz representation 𝐿Λ on the space of fields, satisfying the Lorentz Algebra.
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We thus have,

1
2 𝑖Ω𝜌𝜈𝐿

𝜌𝜈 =
1
2Ω𝜌𝜈 (𝑥𝜈𝜕 𝜌 − 𝑥 𝜌𝜕 𝜈) 𝜙 +

1
2 𝑖Ω𝜌𝜈𝑆

𝜌𝜈𝜙

𝐿 𝜌𝜈 = 𝑖 (𝑥 𝜌𝜕 𝜈 − 𝑥𝜈𝜕 𝜌) + 𝑆 𝜌𝜈 . (A.30)

A.2 Noether’s Thoorem

Action under an infinitesimal transformation is invariant only if parameters 𝜔𝑎 are 𝑥-independent.

“Rigid Transformations”.

Upto first order in 𝜔𝑎 note the following:

𝜕𝑥′𝜈

𝜕𝑥𝜇
= 𝛿 𝜈𝜇 + 𝜕𝜇

(
𝜔𝑎
𝛿 𝑥𝜈

𝛿𝜔𝑎

)
| 𝜕𝑥

′𝜈

𝜕𝑥𝜇
| = 1 + 𝜕𝜇

(
𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎

)
𝜕𝑥𝜈

𝜕𝑥′𝜇
= 𝛿 𝜈𝜇 − 𝜕𝜇

(
𝜔𝑎
𝛿 𝑥𝜈

𝛿𝜔𝑎

)
(A.31)

Then,

𝑆′ =

∫
𝑑𝑑𝑥

(
1 + 𝜕𝜇

(
𝜔𝑎
𝛿 𝑥𝜇

𝛿𝜔𝑎

))
(A.32)

× L
(
Φ + 𝜔𝑎

𝛿F
𝛿𝜔𝑎

,

[
𝛿 𝜈𝜇 − 𝜕𝜇 (𝜔𝑎 (𝛿 𝑥𝜈/𝛿𝜔𝑎))

]
(𝜕𝜈Φ + 𝜕𝜈 [𝜔𝑎 (𝛿F/𝛿𝜔𝑎)])

)
(A.33)

Now, the terms of 𝛿 𝑆 = 𝑆′−𝑆 containing no derivatives of 𝜔𝑎 sum up to zero if the action

is symmetric under rigid transformation. And the terms containing the first derivative of 𝜔𝑎

remain.

𝛿 𝑆 = −
∫
𝑑𝑥𝑗

𝜇
𝑎 𝜕𝜇𝜔𝑎 (A.34)
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with,

𝑗
𝜇
𝑎 =


𝜕L

𝜕

(
𝜕𝜇Φ

) 𝜕𝜈Φ − 𝛿 𝜇𝜈 L

𝛿 𝑥𝜈

𝛿𝜔𝑎
− 𝜕L

𝜕

(
𝜕𝜇Φ

) 𝛿F
𝛿𝜔𝑎

(A.35)

This is the current associated with the infinitesimal transformation A.23, A.24.

Integration by parts gives,

𝛿 𝑆 =

∫
𝑑𝑑𝑥

(
𝜕𝜇𝑗

𝜇
𝑎

)
𝜔𝑎 (A.36)

For an on-shell configuration, we have 𝛿 𝑆 = 0, so

𝜕𝜇𝑗
𝜇
𝑎 = 0 (A.37)

since, 𝜔𝑎 is arbitrary.

Thus every continuous symmetry =⇒ ∃ conserved current (canonical) A.35.

Conserved charge associated to 𝑗 𝜇𝑎 :

𝑄𝑎 =

∫
𝑑𝑑−1𝑥𝑗0

𝑎 . (A.38)

This is all a classical result, and says little about Quantum realization of these symmetries. . .

Energy Momentum Tensor - The GR way

Consider ‘general’ infinitesimal coordinate transformation:

𝑥′𝜇 = 𝑥𝜇 + 𝜖𝜇(𝑥) (A.39)

We identify the stress tensor through,

𝛿 𝑆 =

∫
𝑑𝑑𝑥𝑇 𝜇𝜈𝜕𝜇𝜖𝜈 (A.40)

Assuming𝑇 𝜇𝜈 to be identically symmetric,
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𝛿 𝑆 =

∫
𝑑𝑑𝑥𝑇 𝜇𝜈

(
𝜕𝜇𝜖𝜈 + 𝜕𝜈 𝜖𝜇

)
. (A.41)

Now considering 𝑥′ = 𝑥 + 𝜖 as an infinitesimal coordinate transformation on a pseudo-

Riemannian manifold with metric 𝑔𝜇𝜈 , then

𝑔′𝜇𝜈 =
𝜕𝑥 𝛼

𝜕𝑥′𝜇
𝜕𝑥 𝛽

𝜕𝑥′𝜈
𝑔𝛼𝛽

=

(
𝛿 𝛼𝜇 − 𝜕𝜇𝜖𝛼

) (
𝛿
𝛽
𝜈 − 𝜕𝜈 𝜖𝛽

)
𝑔𝛼𝛽

= 𝑔𝜇𝜈 −
(
𝜕𝜇𝜖𝜈 + 𝜕𝜈 𝜖𝜇

)
(A.42)

So,

𝛿 𝑆 = −1
2

∫
𝑑𝑑𝑥𝑇 𝜇𝜈𝛿 𝑔𝜇𝜈 . (A.43)

We thus have an alternative definition for𝑇 𝜇𝜈 as the functional derivative of the action

w.r.t metric, evaluated at any given space-time!

Consider Scalar field theory on an arbitrary manifold, for example.

𝑆 =

∫
𝑑𝑑𝑥

√
𝑔L (A.44)

=
1
2

∫
𝑑𝑑𝑥

√
𝑔
{
𝑔 𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 +𝑚2𝜙2} (A.45)

Now, use the following hefty stuff:

𝑑𝑒𝑡 𝐴 = 𝑒𝑡𝑟 ln 𝐴, 𝛿 𝑔 𝜇𝜈 = −𝑔 𝛼𝜇 𝑔 𝛽𝜈 𝑔𝛼𝛽, 𝛿
√
𝑔 =

1
2
√
𝑔 𝑔 𝜇𝜈𝛿 𝑔𝜇𝜈 (A.46)

And we find that

𝑇 𝜇𝜈 = −𝑔 𝜇𝜈L + 𝜕 𝜇𝜙𝜕 𝜈𝜙. (A.47)

The Upshot of all this is we get an identically symmetric stress tensor! The downside of

all this is that the calculation can be involved/cumbersome.

181



A Classical Symmetries in QFT

A.3 Rotation Algebra

Recall, the rotation and Lorentz (generalized rotations) algebras.

Rotations are just those transformations that preserve a given norm.

Consider usual euclidean rotations, that is 𝑑𝑥2 =
∑
𝑑𝑥2
𝑖

.

Rotations:

𝑑𝑥′ = 𝑅𝑑𝑥 such that 𝑑𝑥′2 = 𝑑𝑥2, 𝑑𝑒𝑡 (𝑅) = 1 (A.48)

Rotations are just 𝑆𝑂 (𝐷). Let’s find out the infinitesimal generators of this transformation.

𝑅 = 𝐼 + 𝜖𝐷 (A.49)

D turns out to be anti-symmetric using A.48. Such a matrix is simply generated (a linear

combination of) by

𝐽
𝑖𝑗

(𝑚𝑛) = −𝑖
(
𝛿𝑚𝑖𝛿𝑛𝑗 − 𝛿𝑚𝑗 𝛿𝑛𝑖

)
(A.50)

putting those 1s, -1s appropriately across at 𝐷 × 𝐷 Let 𝑅1 = 𝐼 + 𝐴, 𝑅2 = 𝐼 + 𝑁 .

Then,

𝑅1𝑅2 = 𝐼 + 𝐴 + 𝐵 + 𝐴𝐵

𝑅2𝑅1 = 𝐼 + 𝐴 + 𝐵 + 𝐵𝑎

(𝑅2𝑅1)−1 = 𝐼 + [𝐴, 𝐵] (A.51)

This gives us a reason to calculate the commutations :). It suffices to calculate commuta-

tion between the generators.

Now using equation A.50 it is easy to show the 𝑆𝑂 (𝐷) Algebra.

[
𝐽(𝑚𝑛) , 𝐽( 𝑝𝑞)

]
= 𝑖

(
𝛿𝑚𝑝 𝐽(𝑛𝑞) + 𝛿𝑛𝑞 𝐽(𝑚𝑝) −

(
𝑝↔ 𝑞

) )
(A.52)
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Consider the generalized rotations. These basically form 𝑆𝑂 (𝑚, 𝑛), which preserves the

norm - 𝑑𝑠2 =
∑𝑚 𝑖 = 1 (𝑑𝑥𝑖)2 − ∑𝑚+𝑛 𝑖 = 𝑚 + 1 (𝑑𝑥𝑖)2

= 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . 𝑑𝑒𝑡 (𝑅) = 1.

𝑅 = 𝐼 + 𝑖Θ𝜇𝜈 𝐽𝜇𝜈 (A.53)

with

𝐽 𝜇𝜈
( 𝜌𝜎 )

= −𝑖
(
𝜂 𝜌𝜇𝜂𝜎 𝜈 − 𝜂 𝜌𝜈𝜂𝜎 𝜇

)
. (A.54)

We then have the 𝑆𝑂 (𝑚, 𝑛) Lie Algebra as,

[
𝐽(𝑚𝑛) , 𝐽( 𝑝𝑞)

]
= 𝑖

(
𝜂𝑚𝑝 𝐽(𝑛𝑞) + 𝜂𝑛𝑞 𝐽(𝑚𝑝) −

(
𝑝↔ 𝑞

) )
(A.55)

And the Poincaré Algebra is then evaluated by supplementing 𝐽𝜇𝜈 with 𝑃𝜇 = 𝑖𝜕𝜇.

[
𝑃𝜇, 𝑃𝜈

]
= 0 (A.56)[

𝐽𝜇𝜈 , 𝑃𝜌
]
= 𝑖

(
𝜂𝜇𝜌𝑃𝜈 − 𝜂𝜈 𝜌𝑃𝜇

)
(A.57)[

𝐽(𝑚𝑛) , 𝐽( 𝑝𝑞)
]
= 𝑖

(
𝜂𝑚𝑝 𝐽(𝑛𝑞) + 𝜂𝑛𝑞 𝐽(𝑚𝑝) −

(
𝑝↔ 𝑞

) )
(A.58)

A.4 On ‘exponentiating’ infinitesimal transformations

General Theory: An infinitesimal transformation of any generic field 𝑓 (𝑥) can be consid-

ered as a 1-parameter variation whose infinitesimal form is known to be

𝑓 (𝜖) (𝑥) = 𝑓 (0) (𝑥) + 𝜖𝐺 (𝑥) + O(𝜖2) (A.59)

For a field 𝜙(𝑥) in classical field theory,𝐺 (𝑥) ∼ �̃�𝜙(𝑥), where �̃� is the usual infinitesimal

generator A.21 for a given transformation. The finite effect of the transformation is then

given by the integral curve,
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¤𝜙(𝜖) (𝑥) = 𝐺 (𝑥) (A.60)

And for a field theory, we have

𝑑𝜙𝜖 (𝑥)
𝑑𝜖

= −𝑖𝐺𝜙(𝑥) (A.61)

which defines the finite flow using the infinitesimal information viz. ‘Integral Curves’!

Exponentiating the Special Conformal Transformation:

Consider the 𝜖−variation of 𝑥:

𝑥𝜇(𝜖) = 𝑥 + 𝜖𝜉 𝜇

We know 𝜉 𝜇 for the special conformal transformation from table 4.1. We will now derive

the finite form given in the same table.

We have,

𝑥′𝜇 = 𝑥𝜇 + 𝜖2(𝑥 · 𝑏)𝑥𝜇 − 𝑏𝜇𝑥2 (A.62)

𝑥𝜖 = 𝑥0 + 𝜖
(
2(𝑏.𝑥)𝑥 − 𝑏𝑥2

)
(A.63)

So, we want to solve the integral curve,

¤𝑥𝜖 = 2 (𝑏.𝑥𝜖) 𝑥𝜖 − 𝑏𝜖2 (A.64)

We use a magical change of variables:

𝑦 =
𝑥𝜖

𝑥2
𝜖

(A.65)

This gives us,

184



A Classical Symmetries in QFT

¤𝑦 = −𝑏 =⇒ 𝑦 = 𝑦0 − 𝜖𝑏 (A.66)

We can include the ‘extent of flow’ parameter 𝜖 in the strength of 𝑏 i.e. | 𝑏 | itself. Which

gives,

𝑦 = 𝑦◦ − 𝑏 (A.67)

From here on, we will drop the 𝜖 notation on 𝑥𝜖 . And continue to write the initial 𝑥 to

be 𝑥◦ Then,

𝑥

𝑥2 =
𝑥◦

𝑥2
◦
− 𝑏 (A.68)

(A.69)

Note that,
𝑥

𝑥2 = 𝐴 =⇒ 𝑥 =
𝐴

𝐴2 .

We thus have,

𝑥 =
𝑥◦ − 𝑏𝑥2

◦
1 + 𝑥2

◦𝑏2 − 2(𝑏 · 𝑥◦)
(A.70)

Scaling Dimension and Δ̃: Knowing that Δ̃ ∼ 𝐼 , we let Δ̃ = −𝑖Δ𝐼 connect the scaling

dimension of the field with that of the scaling generator. We will show that this is right. It’s

almost trivial at this point, but let’s write things down explicitly anyway.

For scaling, we have a simple 𝜖 - variation,

𝑥 (𝜖) = 1 + 𝜖𝑥 (A.71)
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Then, the finite flow is generated as,

𝑑𝑥 (𝜖
𝑑𝜖

= 𝑥 (A.72)

=⇒ 𝑥 (𝜖) = 𝑥 (0)𝑒𝜖 (A.73)

But we simply write the finite scaling as 𝑥′ = 𝜆𝑥, and we now deduce 𝜆 = 𝑒𝜖 . ‘Exponentiated’

indeed.

Now consider the 𝜖 - variation of the field 𝜙(𝑥),

𝜙(𝑥) (𝜖) = 𝜙(𝑥) − 𝑖 𝜖𝐷𝜙(𝑥) (A.74)

We want to know the details of Δ̃. So, put 𝑥 = 0. Then 𝐷𝜙(0) = Δ̃𝜙(0) by definition.

And also, let’s write Δ̃ = −𝑖Δ. This gives us the following infinitesimal flow,

𝜙(0) (𝜖) = 𝜙(0) − 𝜖Δ𝜙(0) + 𝜖∈ (A.75)

Finite flow is generated as:

𝑑𝜙(0) (𝜖)
𝑑𝜖

= −Δ𝜙(0) (A.76)

𝜙𝜖 (0) ≡ 𝜙′(0) = (𝑒−𝜖)Δ 𝜙(0)

𝜙′(0) = 𝜆−Δ𝜙(0) (A.77)

So, indeed, the connection is rightly captured. In fact, even for Lorentz transformations

in 2 dimensions, we sort of get a similar scale-like factor, but for spin. ∼ Spin dimension. We

will comment on that in the 2D CFT section. We considered the fields at 𝜙(0) and looked

at its exponentiation under scaling. What would be the result if we studied fields at arbitrary

positions? This, indeed, takes us to the next section.
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Appendix B

Quantum Symmetries in QFT
The main result of using Path Integral formulation to quantize a classical field theory is that

the correlation functions can be written as:

⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ =
1
𝑍

∫
[𝑑𝜙]𝜙(𝑥1) . . . 𝜙(𝑥𝑛)𝑒−𝑆 [𝜙] (B.1)

in the Euclidean or Imaginary time setting. Under symmetry transformations (invariant ac-

tion), we have

⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ = ⟨F
(
𝜙(𝑥1)

)
. . . F

(
𝜙(𝑥𝑛)

)
⟩ (B.2)

In reaching the above result, we have changed the dummy integration variables and used

the form A.20 along with the invariance of action. But also importantly, we have assumed

that the measure respects the symmetry [𝑑𝜙′] ∼ [𝑑𝜙] - or that the Jacobian of such a change

of variables 𝜙′ → 𝜙 is trivial (not depending on 𝜙). Equation B.2 can be applied to transla-

tions, Lorentz rotations and scaling as follows:

Translation: 𝑥′ = 𝑥 + 𝑎

⟨𝜙(𝑥′1) . . . 𝜙(𝑥
′
𝑛)⟩ = ⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ (B.3)

Lorentz:(Scalar Fields) 𝑥′𝜇 = Λ𝜇𝜈 𝑥𝜈

⟨𝜙(Λ𝜇𝑥𝜈1 ) . . . 𝜙(Λ
𝜇
𝜈 𝑥
𝜇
𝑛 )⟩ = ⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ (B.4)

Scaling: 𝑥′𝜇 = 𝜆𝑥𝜇

⟨𝜙(𝜆𝑥1) . . . 𝜙(𝜆𝑥𝑛)⟩ = 𝜆−Δ1 . . . 𝜆−Δ𝑛 ⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ (B.5)
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B Quantum Symmetries in QFT

B.1 Ward Identity

Let X denote the product of n fields, whose correlator is given by,

⟨𝑋 ⟩ = 1
𝑍

∫
[𝑑𝜙]𝑋 𝑒−𝑆 [𝜙] (B.6)

=
1
𝑍

∫
[𝑑𝜙′]𝑋 ′𝑒−𝑆 [𝜙

′]

=
1
𝑍

∫
[𝑑𝜙] (𝑋 + 𝛿𝑋 )𝑒−𝑆 [𝜙]−

∫
𝑑𝑥𝜕𝜇𝑗

𝜇
𝑎 𝜔𝑎 (𝑥)

=
1
𝑍

∫
[𝑑𝜙]𝑋 𝑒−𝑆 [𝜙] + 1

𝑍

∫
[𝑑𝜙]𝛿𝑋 𝑒−𝑆 [𝜙] − 1

𝑍

∫
[𝑑𝜙]

{∫
𝑑𝑥𝜕𝜇𝑗

𝜇
𝑎 𝜔𝑎 (𝑥) + O(𝜔2

𝑎)
}

This gives,

⟨𝛿𝑋 ⟩ =
∫
𝑑𝑥𝜕𝜇 ⟨𝑗

𝜇
𝑎 (𝑥)𝑋 ⟩ 𝜔𝑎 (𝑥) (B.7)

But through definition A.21 we also have,

𝛿𝑋 = −𝑖
𝑛∑︁
𝑖=1

(
𝜙(𝑥1) . . . 𝐺𝑎𝜙(𝑥𝑖) . . . 𝜙(𝑥𝑛)

)
𝜔𝑎 (𝑥𝑖) + O(𝜔2

𝑎)

= −𝑖
∫

all space
𝑑𝑥 𝜔𝑎 (𝑥)

𝑛∑︁
𝑖=1

{
𝜙(𝑥1) . . . 𝐺𝑎𝜙(𝑥𝑖) . . . 𝜙(𝑥𝑛)

}
𝛿 (𝑥 − 𝑥𝑖) (B.8)

Using this in equation B.7, we get the Ward Identity for 𝑗 𝜇𝑎 :

𝜕

𝜕𝑥𝜇
⟨𝑗 𝜇𝑎 (𝑥)𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ = −𝑖

𝑛∑︁
𝑖=1
𝛿 (𝑥 − 𝑥𝑖) ⟨𝜙(𝑥1) . . . 𝐺𝑎𝜙(𝑥𝑖) . . . 𝜙(𝑥𝑛)⟩ (B.9)

The form of 𝑗 𝜇𝑎 may be modified from the canonical definition without changing the

ward identity by adding a divergenceless (identically without using the EOM) term. Basi-

cally, this gives us the idea of how the classical N oethers theorem translates into the quantum

theory within the correlation functions.
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B Quantum Symmetries in QFT

Integrating the above identity overall space, including all 𝑥𝑖 makes the LHS vanish, giv-

ing,

𝛿𝜔 ⟨𝜙(𝑥1) . . . 𝜙(𝑥𝑛)⟩ ≡ −𝑖𝜔𝑎
𝑛∑︁
𝑖=1

⟨𝜙(𝑥1) . . . 𝐺𝑎𝜙(𝑥𝑖) . . . 𝜙(𝑥𝑛)⟩ = 0

Variation of correlator under infinitesimal transformations vanishes! This is basically the

infinitesimal version of equation B.2 (by just noting that F
(
𝜙(𝑥𝑖

)
≡ 𝜙′(𝑥′

𝑖
)).

Ward Identity allows us to identify the conserved charge as the generator of the

symmetry transformation on the Hilbert Space of Quantum States!

First, let’s look at the calculation, and then we will recall the connection between Noether

charge and quantum symmetries.

Define the following,

• 𝑄𝑎 =
∫
𝑑𝑑−1𝑗0

𝑎 (𝑥),

• 𝑌 = 𝜙(𝑥2) . . . 𝜙(𝑥𝑛),

• 𝑡 = 𝑥0
𝑖
≠ 𝑥0

2 ≠ . . . ≠ 𝑥0
𝑛.

Integrate the Ward Identity in a thin pill box -

𝑡− < 𝑡 < 𝑡+ such that 𝑥2, . . . 𝑥𝑛are excluded

−∞ < 𝑥 < ∞

Start with L.H.S -

∫
𝑑𝑥𝜕𝜇 ⟨𝑗

𝜇
𝑎 (𝑥)𝜙(𝑥)𝑌 ⟩ =

∫
𝑑𝑥𝜕0 ⟨𝑗0

𝑎 (𝑥)𝜙(𝑥1)𝑌 ⟩ +
∫
𝑑𝑥𝜕𝑖 ⟨𝑗 𝑖𝑎 (𝑥)𝜙(𝑥1)𝑌 ⟩

=

∫
𝑑𝑡𝜕𝑡 ⟨𝑄𝑎 (𝑡)𝜙(𝑥1)𝑌 ⟩ +

∫
𝑑𝑡

∫
(((((((((((
𝑑𝑥𝜕𝑖 ⟨𝑗 𝑖𝑎 (𝑥)𝜙(𝑥1)𝑌 ⟩

= ⟨𝑄+
𝑎𝜙(𝑥1)𝑌 ⟩ − ⟨𝑄−

𝑎 𝜙(𝑥1)𝑌 ⟩ (B.10)
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B Quantum Symmetries in QFT

And the r.h.s reads - since the space includes only 𝑥 = 𝑥1,

𝑅.𝐻 .𝑆 = −𝑖 ⟨𝐺𝑎𝜙(𝑥1)𝑌 ⟩

and in the limit 𝑡− → 𝑡+ of the operator formalism (where correlation functions are the

time ordered expectation value of fields), we have

⟨0|
[
𝑄𝑎, 𝜙(𝑥1)

]
𝑌 |0⟩ = −𝑖 ⟨0|𝐺𝑎𝜙(𝑥1) |0⟩ (B.11)

and since𝑌 is arbitrary, we have,

[
𝑄𝑎, 𝜙

]
= −𝑖𝐺𝑎𝜙. (B.12)
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