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Abstract. These are notes taken as an effort to consolidate the material by
the author for the course Introduction to Manifolds at NISER taught by Dr.
Chitrabhanu Chowdhury during the even semester 2024-2025. It’s a combination
of lecture scribes, detail filling and personal notes connecting the material.
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1. Manifolds

1.1. Topological Manifolds.

Definition 1.1. A topological manifold X of dimension n is a topological space
such that,

• X is Hausdorff and second countable.
• (Locally Euclidean) For any p ∈ X, there is a neighorhood U such that
there is a homoemorphism ϕ : U → V , where V ⊆ Rn is an open subset.

(U, ϕ) is called a chart of X (containing p). It is called a chart cenetered at p
if ϕ(p) = 0. One can naturally wonder if the dimension of a manifold is unique.
Indeed, we ask:

Question 1.2. Can a 2-dimensional manifold be a 3-dimensional manifold (and
vice-versa)?

The answer is no due to the following theorem on Euclidean spaces.

Theorem 1.3 (Invariance of Domain). If U ⊆ Rn and V ⊆ Rm are open sets and
ϕ : U → V is a homeomorphism, then n = m.

Proof. One can show this for n = 1 by using a simple connectedness argument.
The general proof however relies on the machinery of homology groups. □

Local Euclideanness of manifolds then immediately gives the following.

Corollary 1.4. If X is a topological manifold of dimensions n, it can’t be a topo-
logical manifold of any other dimension.

One can still talk about different dimensions by dealing with connected compo-
nents where the dimension is a locally constant function; but we won’t be dealing
with such cases here.

1.1.1. Examples. Using the fact that Rn is a second countable and Hausdorff space,
we have the following elementary examples of manifolds.

Example 1.5. Rn is a topological manifold of dimension n. (Rn, Id) covers Rn as
a single chart.

Example 1.6. U ⊆ Rn is a topological manifold of dimension n.

Example 1.7 (A cusp). K = {(x, y) |y2 = x3} is a topological manifold of dimen-
sion 1. Take the projection onto the y axis. That is, consider ϕ : K → R with

ϕ(x, y) = y which has the inverse, ϕ−1 : R → K with ϕ−1(y) =
(
y

2
3 , y
)
. ϕ is then

a homeomorphism and ((K,ϕ)) is a chart. Any X which is homeomorphic to K is
also thus a 1 dimensional topological manifold.
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Figure 1. A 1 dimensional topological manifold: Cusp.

Example 1.8 (Cone).

X =
{
(x, y, z) ∈ R3|z = x2 + y2, z ≥ 0

}
Take a projection onto the xy plane, ϕ : X → R2, ϕ(x, y, z) = (x, y). This gives

the homeomorphism to R2. Thus, a cone is a 2d topological manifold covered by
(ϕ,X).

Figure 2. Cone as a 2 dimensional manifold.

Example 1.9 (Circle).

S1 =
{
(x, y) |x2 + y2 = 1

}
Although not homeomorphic to R it is locallyi Euclidean. To see this, consider

the folowing charts:
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• U1 = {(x, y) ∈ S1 | y > 0} =
{(
x,
√
1− x2 | x ∈ (−1, 1)

)}
which is homeo-

morphic to (−1, 1) ⊆ R, through ϕ1 : U1 → R, ϕ1(x, y) = x.
• U2 = {(x, y) ∈ S1 | y < 0} =

{(
x,−

√
1− x2 | x ∈ (−1, 1)

)}
which is home-

omorphic to (−1, 1) ⊆ R, through ϕ2 : U2 → R, ϕ2(x, y) = x.
• Similarly U3 and U4 projecting them onto y axis: (−1, 1).

S1 is thus a topological 1-manifold.

Figure 3

Exercise 1.10. Similarly, Sn is a topological manifold of dim. n.

Figure 4

Proof. We can show this by using stereographic projection of the n-sphere. Let
N = (0, . . . , 0, 1) , S = (0, . . . , 0,−1) ∈ Sn. Define U = Sn \N, V = Sn \ S and
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(a) Projection near the North Pole. (b) Projection near the South Pole.

ϕ : U → Rn

x 7→ ϕ (x1, . . . , xn+1) =

(
x1

1− xn+1

, . . . ,
xn

1− xn+1

)
.

and

ψ : V → Rn

x 7→ ψ (x1, . . . , xn+1) =

(
x1

1 + xn+1

, . . . ,
xn

1 + xn+1

)
.

The charts (U, ϕ) , (V, ψ) cover Sn as an n-dim. manifold. □

1.1.2. Non Examples.

Example 1.11. Any discrete space (a set with discrete topology) which is un-
countable is not a manifold, because it’s not second countable. And thus, R ×D
where D is a discrete uncountable space is also not a manifold.

Exercise 1.12 (Real line with double origin). X = R×{0, 1} / ∼ with (x, 0) ∼ (x, 1)
if x ̸= 0.

Figure 6

Proof. We will prove this in two ways, once with and once without envoking the
quotient topology. We will come back to this proof soon. □
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Example 1.13. Y = {(x, y) ∈ R2 | xy = 0} is not localle Euclidean at (0, 0). Con-
sider a neighborhood U ⊆ Y of 0. Assume U is connected (or take a connected
component containing 0). Suppose it is locally Euclidean at 0. Then, ∃

ϕ : U → (a, b) ⊂ R

a homeomorphism with say h(0) = c. It’s restriction h : U \{(0, 0)} → (a, c)∪(c, b)
is also a homeomorphism. This is a contradiction since, U \{(0, 0)} has 4 connected
components while (a, c) ∪ (c, b) has only two.

Figure 7

Example 1.14. Z = {(x, y, z) ∈ R3 | x2 + y2 = z2} is not a topological manifold.
This too follows from a connectedness argument. If Z were to be locally Euclidean
around 0, there is a homeomorphism of the neighborhood around 0 (simply a small
open ball in R3 intersected with Z) to the open disc D2 in R2. Restricting this to
Z \ 0 gives a disparity in the conceted components (two in Z \ 0 and none in D2).
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Figure 8

Example 1.15. X = S2 ∪ (D2 × {0}) is not a topological manifold. This is
basically a sphere with a 2d disc attached. The problem is at S1 × {0} ⊂ X. One
needs to envoke local homology groups to prove this statement.

Figure 9

1.1.3. Properites of a topological manifold.

(1) Locally Compact.
(2) Locally path connected.
(3) Connected components are path component.
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(4) There are Countably many connceted components.

These are one of the herculean tasks. We will come back to prove these.

1.2. Smooth Manifolds. LetM be a topological manifold, and (U, ϕ) and (V, ψ)
be two charts of M. The two charts are called (smoothly or C∞) compatible if the
transition functions

ψ ◦ ϕ−1 :ϕ (U ∩ V ) → ψ (U ∩ V )

ϕ ◦ ψ−1 :ψ (U ∩ V ) → ϕ (U ∩ V ) .

are both smooth. The idea is to develop the notion of smoothness of a manifold,
so that it suffices to check smoothness with a single chart around a given point.

Figure 10

Definition 1.16 (Smooth Atlas). Let M be a topological manifold. A smooth
atlas A on M is a set of charts {(Ui, ϕi) | i ∈ I} such that,

(1) (Ui, ϕi) and (Uj, ϕj) are compatible for all i, j ∈ I.
(2) M =

⋃
i∈I Ui.

Definition 1.17 (Smooth manifold). A smooth structure on a topological mani-
fold M is a maximal smooth atlas A on M. A smooth manifold is a pair (M,A) is
a maximal smooth atlas on M.

Remark 1.18. A smooth atlas is called maximal if it is not properly contained
in any other smooth atlas. This will be useful to deal with different structures
given by different smooth atlasses. Any smooth atlas is infact contained in a
unique maximal atlas. Looking for maximal atlas is almost hopeless. We have
the following neat result which makes things easier. Further, in two and three
dimensions all smooth structures are diffeomorphic!

Proposition 1.19. Let M be a topological manifold.

(1) Any smooth atlas of M is contained in a unique maximal smooth atlas.
(2) Two smooth atlases are contained in the same maximal atlas if and only if

their union is a smooth atlas.
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Thus, finding one smooth atlas for a manifold suffices to give a unique smooth
structure to a topological manifold. However, it is a difficult and active question
to distinguish two smooth strucutres or to find all the smooth strucutres on a
manifolds.

2. Submanifolds

Theorem 2.1 (Inverse Function Theorem for manifolds). Let F : M → N be a
smooth map,

(1) If F∗p : TpM → TF (p)N is an isomorphism, then ∃ a neighborhood V of p
and a neighborhood U ∈ F (p) s.t. F (V ) = U and

F : V → U is a diffeomorphism.

(2) If F∗p : TpM → TF(p)N is an isomorphism for all p ∈ M , then F is a local
diffeomorphism.

(3) If F is a bijection and F∗ : TpM → TF(p)N is an isomorphism for all p ∈M ,
then F is a diffeomorphism.

Proof. Suppose n = dim(M) = dim(N). Let (V, ψ) be a chart centered at F (p).
And (U, ϕ) be a chart centered at p. Then,

G = ψ ◦ F ◦ ϕ−1 : ϕ(U) ⊆ Rn → ψ(V ) ⊆ Rn, G(0) = 0

has an invertible jacobian matrix JG (0) because F∗p is injective. So, by Inverse
function theorem on Euclidean spaces, ∃U ′

0 ⊆ ϕ(U) and 0 ∈ U ′
0 s.t. V ′

0 = G(U ′
0) is

also open in ψ(V ) and G : U ′
0 → V ′

0 is a diffeomorphism. Then,

F = ψ−1 ◦G ◦ ϕ : U0 := ϕ−1(U ′
0) → V0 := ϕ−1(V ′

0) is also a diffeomorphism.

Figure 11

□
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2.1. Regular Submanifolds.

Definition 2.2. Let N be a smooth n-manifold and M ⊆ N . Then M is called a
regular submanifold of dim.k of N if for any p ∈M , ∃ a chart (U, ϕ) of N s.t.

U ∩M = {ϕ−1 (x1, . . . , xn) x ∈ ϕ(U) | xk+1 = . . . = xn = 0}

Figure 12. Regular Submanifold M of N . This is basically a pro-
totype of Rk living inside Rn.

Remark. n−k = dim(N)−dim(M) is called the co-dimension of the subman-
ifold M . We can cover M by charts satisfying the above property. Let,

ϕM : U ∩M → Rk

ϕM(q) = (ϕ1(q), . . . , ϕk(q)) (2.1)

ϕM : U ∩M → ϕM (U ∩M) ⊆ Rk is continous, bijection and open and thus a
homeomorphism (using the projection map which is open and continous).

(U, ϕ) is called an adapted chart ofM . Now we check for smoothness. Let (U, ϕ),
(V, ψ) be two adapted charts of M ,

Figure 13

We want to show ψM ◦ ϕ−1
M : ϕ(U ∩ V capM) → ψ (U ∩ V ∩M) is smooth.

ψM ◦ ϕ−1
M is given by,
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(
ψ1

(
ϕ−1 (x1, . . . , xk, 0, . . . , 0)

)
, . . . , ψk

(
ϕ−1 (x1, . . . , xk, 0, . . . , 0)

))
and is indeed smooth. So we have,

Proposition 2.3. A regular submanifold has a unique smooth strucutre where the
adapted charts form an atlas.

Remark. Any manifold can be realized as a regular submanifold of some Rd.
Examples.
1. M is an n-manifold, U ⊆M is an open subset, then U is a regular submanifold

of dim.n. Moreover, if N ⊆ M is a regu;lar submanifold of dim.k then N is an
open subset of M. So submanifolds of co-dimension 0 are just open ssubsets.

2. Rk × {0} ⊆ Rn is a submanifold of dim. k.
3. (−1, 1)× {0} is a submanifold of R2 of dim. 1. The adapted chart is

((−1, 1)× R, Id).

Figure 14

4. X = {(x, y) ∈ R2 | xy = 0; x, y ≥ 0} is not a regular sub manifold of R2.
5. C = {(x, y, z) ∈ R3 | x2 + y2 = z2; z ≥ 0} is not a regular submanifold of R3.

Figure 15
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Definition 2.4. If F :M → N is a smooth map between smooth manifolds,

(1) A point p ∈ M is called a criticial point if F∗p : TpM → TF (p)N is not
surjective.

(2) A point q ∈ N is called a critical value if F−1(q) has a critical point,
otherwise q is called a regular value.

Remark. q ∈ N is a regular value if either F−1(q) is empty or ∀p ∈ F−1(q),
F∗p is surjective. Note that if dim. M > dim. N , then all points of N are regular.
Sard’s theorem asserts that the set of critical values is a null set (lesbegue measure
0). Note also that

F∗p is injective ⇐⇒ m < n, rk (JF ) is maximal (m).

F∗p is surjective ⇐⇒ m > n, rk (JF ) is maximal (n).

Examples.
1. Let F :M → R be a smooth map, then note that p ∈M is a critical point of

F only if F∗ = 0, i.e. if (U, ϕ) is a chart around p, then

∂F ◦ ϕ−1

∂xi
(ϕ(p)) = 0, ∀i = 1, . . . , n.

2. F : Mn(R) → SMn (R) , F (A) = AAt. Note that F−1(I) = O (n) the set of
all n× n orthogonal matrices.

Suppose A ∈ O(n), then what is the rank of F∗ : TAMn(R) → TISMn(R)?
Let γ(t) = A + tB, γ : R → Mn(R) be a curve starting passing through A with

γ′(0) = B ∈ TAMn(R). Then,

F (γ(t)) = AAt + t2BBt + t
(
ABt +BAt

)
= F∗ (γ

′(0)) = (F ◦ γ)′ (0) = ABt +BAt ∈ TISMN(R).

Now, for any C ∈ SMn(R), let B = 1
2
CA. Then F∗(B) = C. So, F∗ is surjective

for all A ∈ F−1(I). So I is a regular value of F .
3. Consider f = det : Mn(R) → R. Then SL(n,R) = f−1(1). To show 1 is a a

regular value of f we write,

det(A) =
n∑
j=1

(−1)i+jaijdet(Mij)

∂f(A)

∂aij
= (−1)i+j det(Mij). (2.2)

If A is a critical point of f , then det(Mij) = 0 ∀i, j =⇒ det(A) = 0. So indeed
1 is a regular value of f .

Regular submanifolds are precisely characterized by these regular values!
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Theorem 2.5 (Regular Level Set/Regular Value). If F : N (n) →M (m) is a smooth
map and c ∈M is a regular value of F , then F−1(c) is a regular submanifold of N
of co-dimension m.

Figure 16

Proof. For p ∈ F−1(c), choose a chart (U, ϕ) centered at p and a chart (V, ψ) ∋ c
and ψ(c) = 0. Assume F (U) ⊆ V . So, ψ ◦ F ◦ ϕ−1(0) = 0. Further, F∗ : TpN →
TcM is surjective, so the rank of Jψ◦Fϕ−1(0) is m. This means JψFϕ−1 can be
written as,

JψFϕ−1 =
[
A|B

]
(2.3)

where A is an m× (n−m) matrix and B is an invertible m×m matrix.
Consider now,

θ : U → Rn

θ(q) = (ϕ1(q), . . . , ϕn−m(q), (ψF )1 (q), . . . , (ψF )m (q)) . (2.4)

then

θ ◦ ϕ−1 : ϕ(U) → Rn

θ ◦ ϕ−1(x) =
(
x1, . . . , xn−m, ψ ◦ F ◦ ϕ−1

)
(2.5)

has the following jacobian,

Jθ◦ϕ−1(0) =

(
I 0
A B

)
(2.6)

and is invertible since B is invertible.
So, ∃W ⊆ ϕ(U) open containing 0 s.t. θ ◦ ϕ−1(W ) is open, and

θ ◦ ϕ−1 : W → θ ◦ ϕ−1(W ) is a diffeomorphism.
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Consider, U0 = ϕ−1(W ) ⊂ U . Then, (U0, θ) is an adapted chart for F−1(c)
around p. Since, For q ∈ U0 ∩ F−1(c),

θ(q) = (x1, . . . , xn−m, 0, . . . , 0) .

□

We should check this for Sn ⊂ Rn+1.

Theorem 2.6 (Transversality). If F : M → N is a smooth map and P ⊆ N is a
submanifold. Then F is called transverse to P is ∀c ∈ P and all q ∈ F−1(c),

F∗TqM + TcP = TcN

If this holds, then F−1(P ) is a submanifold of M .

We will now through some results try to establish when an image of a smooth
map is a submanfild.

Theorem 2.7 (Constant Rank - Euclidean Case). Let U ⊆ Rn be open, f : U →
Rm a smooth map s.t. rkJf (x) = k ∀x ∈ U . Then for any p ∈ U∃ an open set
U0 ⊆ U containing p and a neighborhood V0 of f(p) in Rm, and diffeomorphisms
ϕ : U0 → ϕ(U0) and ψ : V0 → ψ(V0) s.t. f(U0) ⊂ V0 and ψ ◦ f ◦ ϕ−1(x) =
(x1, . . . , xk, 0, . . . , 0).

This says, U is a regular submanifold of Rn.

Proof. Let p = 0, f(p) = 0 (WLOG). We have,

Jf (0) =

(
A B
C D

)
(2.7)

WLOG, assume A is an invertible k × k matrix.
Then define,

ϕ : U → Rn

ϕ(x) = (f1(x), . . . , fk(x), xk+1, . . . , xn) (2.8)

which has a jacobian,

Jϕ(0) =

(
A B
0 I

)
(2.9)

and is invertible because A is invertible. Then ∃ a connected neighborhood U0 of
0 s.t. ϕ : U0 → ϕ(U0) is a diffeomorphism. Denote U ′ = ϕ(U0).
For x ∈ Rn, x = (u, v) where u = (x1, . . . , xk) , v = (xk+1, . . . , xn). We can write,

f ◦ ϕ−1 : U ′ → Rn

f ◦ ϕ−1(u, v) = (u, h(u, v)) (2.10)
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where,

h : U ′ → Rm−k

h(u, v) =
(
fk+1 ◦ ϕ−1(u, v), . . . , fm ◦ ϕ−1(u, v)

)
(2.11)

Then, Jf◦ϕ−1(u, v) = Jf (ϕ
−1(u, v)) Jϕ−1(u, v) has rank k, since Jϕ−1 has full rank

n. But we have,

Jf◦ϕ−1(u, v) =

(
Ik 0

C ′(u, v) D′(u, v)

)
(2.12)

which means D′(u, v) = 0 as J doesn’t have n × n non-singular sub matrix
(k ̸= n). We then have h(u, v) = h(u) giving f ◦ ϕ−1(u, v) = (u, h(u)) .

Now, for y ∈ Rn, y = (u,w) where u = (y1, . . . , yk) , w = (yk+1, . . . , yn) define

ψ : V ′ × Rm−k → Rm (2.13)

ψ(u,w) = (u,w − h(u)) (2.14)

where, V ′ = {u ∈ Rk | (u, 0) ∈ U ′}. ψ is a diffeomorphism onto its image! And
we have,

ψ ◦ f ◦ ϕ−1(u, v) = ψ(u, h(u)) = (u, h(u)− h(u)) = (u, 0).

□

Theorem 2.8 (Constant Rank - Manifold Case). Let F : N (n) → M (m) be a
smooth map. Suppose p ∈ N has a neighborhood U s.t.

F∗ : TqN → TF (q)M has a rank k ∀q ∈ U,

then there are charts (U0, ϕ) around p in N and (V0, ψ) around F (p) in M , s.t.
F (U0) ⊆ V0 and ψ ◦ F ◦ ϕ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Proof. Let (V1, θ) be a chart of M centered at F (p), and (U1, ζ) be a chart in N
centered at p s.t. U1 ⊆ U and F (U1) ⊆ V1. Apply the last theorem to the following
map,

f = θ ◦ F ◦ ζ−1 : ζ(U1) ⊆ Rn → θ(V1) ⊆ Rm.

□

Corollary 2.9 (Constant Rank Level Set). Suppose F :M → N is a smooth map,
and c ∈M is s.t. ∃U ⊆ N open and F−1(c) ⊆ U for which,

F∗ : TqN → TF (q)M has a rank k ∀q ∈ U.

Then, F−1(c) is a regular submanifold of codimension k.
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Proof. For p ∈ F−1(c), by constant rank theorem, there are charts (U, ϕ) containing
p and (V, ϕ) containing F (p) = c and ψ(c) = 0 s.t.

ψ ◦ F ◦ ϕ−1(x) = (x1, . . . , xk, 0, . . . , 0)

ϕ(U ∩ F−1(c)) = ϕ ◦ F−1(c)

= ϕ ◦ F−1 ◦ ψ−1(0)

=
(
ψ ◦ F ◦ ϕ−1

)−1
(0)

= {x ∈ ϕ(U) | x1 = · · · = xn = 0} (2.15)

So, (U, ϕ) is an adapted chart of F−1(c). □

2.2. Immersions and Submersions. Note that the rank of F∗. where F :M →
N is a smooth map can increase in a neighborhood but won’t decrease, because
the det remains non-zero in a neighborhood of p, if det|p ̸= 0.

Definition 2.10. Let F :M → N be a smooth map.

(1) F is called an immersion at p ∈ M if F∗ : TpM → TF (p)N is injective. F is
called an immersion if it is an immersion at all points of M .

(2) F is called a submersion at p ∈M if F∗ : TpM → TF (p)N is surjective. And
F is called a submersion if it is a submersion at all points of M.

Corollary 2.11. Let F :M (m) → N (n) be a smooth map.

(1) If F is an immersion at p, then there are charts (U, ϕ) centered at p and
(V, ψ) centered at F (p) s.t. F (U) ⊆ V and

ψ ◦ F ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

(2) If F is a submersion at p ∈ M , then there are charts (U, ϕ) centered at p
and (V, ψ) centered at F (p) s.t. F (U) ⊆ V and

ψ ◦ F ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xn)

This follows because the rank is maximal and is thus constant in a neighborhood
of p in both the cases. By constant rank theorem, the results follow immediately
for k = m and k = m.

Remark. The immersion is basically a prototype of an inclsuion map while a
submersion is a prototype of a projection map!

Definition 2.12. A smooth map F :M → N is called an embedding if

(1) F is an immersion.
(2) F : M → F (M) is a homeomorphism, where F (M) has the subspace

topology in N .
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Remark. If the domain M is compact then continuity and bijection =⇒
homeomorphism (closed map), since compact subsets of a Hausdorff space are
closed.

Examples.
1. F : R → R2, F (t) = (t2, t3). Then F ′(t) = (2t, 3t2) , F ′(0) = 0. So F∗0 :

T0R → T0R2 has a rank 0 at t = 0, and thus F is not an immersion at 0. Thus, F
is not an immersion.

However, F : R → F (R) is a homeomorphism.
But, F is not an embedding. Note that F (R) is not a regular submanifold of

R2, although is a topological manifold.

Figure 17

2. Consider S = {(x, y) ∈ R2 | sy = 0; x, y ≥ 0}. This is an image of a smooth
map R → R2, but that map cannot be an immersion.

For example consider,

f(t) =


(
0, et

2 − 1
)

t ∈ (−∞, 0](
et

2 − 1, 0
)

t ∈ [0,∞)
(2.16)

This is a smooth map, and f(R) = S, but fails to be an immersion at t = 0.
And S is not a regular submanifold of R2.
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Figure 18

3. g : R → R2, g(t) = (t2 − 1, t3 − t) . Then,

X = g(R) = {(x, y) ∈ R2 | y2 = x2(x+ 1)}

Figure 19

g′(t) = (2t, 3t2 − 1). So g is an immersion for all t ∈ R. But g : R → X is
not a homeomorphism. X is neither a regular submanfiold of R2 nor a topological
manifold.

4. Figure-8:
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Consider,

f :

(
−π
2
,
3π

2

)
→ R2

f(t) = (cos t, sin 2t) (2.17)

f ′(t) = (− sin t, 2 cos 2t). So f is an immersion.

Figure 20

f is however not homeomorphic to the image, E. And E is not a regular subman-
ifold of R2. The problem is at (0, 0). The neighborhood is not locally Euclidean.
f
(
π
2
− ϵ, π

2
+ ϵ
)
is not open in E.

Theorem 2.13. If F :M (m) → N (n) is an embedding, then S = F (M) is a regular
submanifold of dim.m.

Proof. For any p ∈M , there are charts (U, ϕ) centered at p and (V, ψ) centered at
F (p) s.t. F (U) ⊆ V and

ψ ◦ F ◦ ϕ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

Now, F (U) ⊆ V ∩ S. But since F (U) is open in S due to the embedding, we have
V ′ open in S such that V ′ ∩ S = F (U). Then we can take (V ∩ V ′, ψ) as the
adapted chart of S around F (p). □

And infact,

Proposition 2.14. If S ⊆ M is a regular submanifold, then the inclusion map
i : S →M is an embedding.

We can basically find the jacobian of i in local coordinates and see that the rank
is dim.M. at all points in S. Thus i is an immersion.

The image of an embedding is called an Embedded submanifold. And the above
two theorems show that it is same as the regular submanifold!
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2.3. Tangent space of a submanifold. If S ⊆ M is a submanifold, then i :
S −M is an embedding. So i∗ : TpS → TpM is injective for all p ∈ S. We then
identify TpS with i∗(TpS) = TpS ⊆ TpM . So we take TpS as a subspace of TpM .

What is this subspace?
As derivations: If fp ∈ C∞

p (M), v ∈ TpS. Then

i∗(v)(fp) = v(f ◦ i)p) = v((f |S)p)
Recall that for any v ∈ TpS, there is a smooth curve whose velocity vector at 0

is v.

Proposition 2.15. If F :M → N is a smooth map, and c ∈ N is a regular value
of F , then S = F−1(c) is a regular submanifold. For p ∈ S,

Tp(S) = ker (F∗ : TpM → TcN) .

Proof. If γ : (−ϵ, ϵ) →M is a smooth curve with, γ ((ϵ, ϵ)) ⊆ S, γ(0) = p,

F ◦ γ(t) = c =⇒ F∗ (γ
′(0)) = 0

So, TpS ⊆ ker (F∗p) . Now, S is a manfiold of dimensions dim(M)− dim(N). So,

dim (TpS) = m− n = dim (ker (F∗p)) .

Note that F∗p is a surjection for all p ∈ S, since c is a regular value. And thus,
dim (ker (F∗p)) = m− n. So, ker (F∗p) ⊆ TpS. □

Examples.
1. Sn ⊆ Rn+1, F : Rn+1 → R, F (x) = ∥x∥2. Then Sn = F−1(1). And 1 is a

regular value of F . Because F ′(x) = 2 (x1 · · · xn+1) = 0 ⇐⇒ x = 0 ∋ Sn. So F
has rank 1 and is surjective for all x ∈ Sn. Then,

TpS
n = ker

(
F∗ : TpRn+1 → T1R

)
We have,

F∗

(
ai

∂

∂xi
|p
)

=

(
ai
∂F

∂xi
(p)

)
d

dt
|1 = 0 ⇐⇒ ai

∂F

∂xi
(p) = ⟨a,∇F (p)⟩ = 2 ⟨a, p⟩ = 0

Thus, TpS
n = ⟨p⟩⊥ .

2. If F : Rn → R is a smooth map and c ∈ R is a regular value of F , and
S = F−1(c). Then,

TpS = ⟨∇F (p)⟩⊥ . (2.18)

3. SL (n,R) ⊆ Mn(R) adn det : Mn(R) → R is a smooth function with 1
as a regular value and SL(n,R) = det−1(1). Note that I ∈ SL(n,R). What is
TISL(n,R)?
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TISL (n,R) = ker (det∗ : TIMn(R) → R)
.

Note that TIMn(R) =Mn(R). And consider the following smooth curve

γ : R →Mn(R)
γ(t) = I + tA (2.19)

such that γ(0) = I, γ′(0) = A. So A ∈ TIMn(R). Then,

det(γ(t)) = det(I + tA)

= tnχ−A

(
1

t

)
= 1 + tr(A) + · · ·+ tndet(A)

det∗(γ(t)) = tr(A)

So, TISL(n,R) = {A ∈Mn(R) | tr(A) = 0}.
Note that we have used the form of characterisitc polynomial,

χA(t) =| tI − A |= tn − tn−1tr(A) + · · ·+ det(A).

Remark. The tangent space at identiy of a Lie group is called a Lie Alge-
bra. And SL(n,R) is a Lie Group and we identified the Lie algebra in the above
example.

3. Vector Bundles

So far we have not linked the tangent spaces at different points. This section
will discuss aspects related to that, where we can smoothly move between such
vector spaces.

3.1. Tangent Bundle. Let M be a smooth dim. n manifold, then define,

TM =
⋃
p∈M

TpM. (3.1)

A point in TM is a pair (p, v) where v ∈ TpM.. We will give a topology for this
set, but before that let’s look at the potential charts on this potential space. If
(U, ϕ) is a chart of M then any tangent vector v ∈ TpM for p ∈ U can be written
as,

v = ci(v)
∂

∂xi

∣∣∣∣
p

(3.2)
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where ϕ = (x1, . . . , xn). Then consider ϕ̃ a map on TU =
⋃
p∈M TpM ⊆ TM ,

ϕ̃ : TU → ϕ(U)× Rn(
p, ci

∂

∂xi

∣∣∣∣
p

)
7→ (ϕ(p), (c1, . . . , cn)) . (3.3)

ϕ̃ is a bijection, since ϕ is a homeomorphism. We can give a topology on TU
immediately by declaring ϕ̃ is a homeomorphism. We can instead do something
more transparent and easy but equivalent. Before doing that formally let’s see the
transition maps of these potential charts. If (U, ϕ) and (V, ψ) are both charts on
M,

T (U ∩ V )

φ(U ∩ V )× Rn ψ(U ∩ V )× Rn

ϕ̃ ψ̃

ψ̃◦ϕ̃−1

For a point (p, v) ∈ U ∩ V , the tangent vector v at p in the bases induced by
the charts read as,

ai
∂

∂xi

∣∣∣∣
p

= bi
∂

∂yj

∣∣∣∣
p

∈ TpM. (3.4)

The ai and bi are realted by the change of coordinates through the Jacobian
matrix of the transition function in M. So, the transition maps on TM are simply
given by, (

ψ̃ ◦ ϕ̃−1
)
(x, a) =

(
ψ ◦ ϕ−1 (x) , Jψ◦ϕ−1(x)a

)
. (3.5)

and is thus smooth (from the smoothness of ψ ◦ ϕ−1).

3.1.1. Topology on the Tangent Bundle. We will now formally give the topology
on TM . Let {(Uα, ϕα) |α ∈ N} be a countable atlas of M, and {Bαβ|α, β ∈ N} be
a countable basis of ϕα(Uα)×Rn. One can always get hold of such countable atlas
because M has a countable basis.

Claim 3.1. {ϕ̃−1
α (Bα,β) |α, β ∈ N} is a basis of a topology on TM .

Proof. We need to show that the collection covers TM and also that there is
another set in the collection in an intetion of sets in the collection.

(1)
⋃
β ϕ̃

−1
α (Bαβ) =

⋃
α TUα = TM , because Bαβ cover ϕα(Uα)× Rn.

(2) Let V = ϕ̃−1
α (Bαβ)∩ϕ̃−1

γ (Bγδ) ⊆ TUα∩TUγ ⊆ TM be the intersubsection of

two potential basis sets, then it suffices to show ϕ̃α (V ) is open in ϕ̃α (Uα)×
Rn.
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ϕ̃α(V ) = Bαβ ∩ ϕ̃α
(
TUα ∩ ϕ−1

γ (Bγδ)
)

= Bαβ ∩ ϕ̃α ◦ ϕ̃−1
γ

(
ϕ̃γ (TUα ∩ TUγ) ∩Bγδ

)
= . . . ∩ .. ((ϕγ (Uα ∩ Uγ)× Rn) ∩Bγδ) (3.6)

since Uα ∩ Uγ is open in M , we get ϕ̃α(V ) to be open.

□

Claim 3.2. The projection map π : TM →M given by ϕ(p, v) = p is a continous
map.

Proof. Let U ⊆ M be open, we need to show that π−1(U) is open in TM . It is
enough to show that for each Uα chart of M , π−1(Uα ∩ U) is open, since such sets
cover π−1 (U). Let (p, w) ∈ π−1 (Uα ∩ U). Then ∃Bαβ s.t,

ϕ̃α ((p, w)) ∈ Bαβ ⊆ ϕ̃α (Uα ∩ U)× Rn.

=⇒ (p, w) ∈ ϕ̃−1
α (Bαβ) ⊆ π−1 (Uα ∩ U) =⇒ π−1 (Uα ∩ U) is open.

□

Claim 3.3. The topology on TM generated by this basis is second countable and
Hausdorff.

Proof. The countability of the basis of TM is inherited by defition. We will show
that TM is indeed Hausdorff.

Let (p, v) ̸= (q, w) ∈ TM .

(1) If p ̸= q, then ∃U ∋ p, V ∋ q ⊆M s.t. U ∩ V = ∅. π−1 (U) and π−1 (V ) are
open in TM , since π is continous. Thus π−1 (U) ∩ π−1 (V ) = ∅.

(2) If p = q, v ̸= q, Let Uα ∋ p. Since ϕ̃ is a bijection, ϕ̃α ((p, v)) ̸= ϕ̃α ((p, w)).

So in ϕ̃α (Uα) × Rn there exist Bαβ, Bαγ containing ϕ̃α (p, v) , ϕ̃α (p, w) re-

spectively such that Bαβ ∩ Bαγ = ∅. Thus ϕ̃α
−1

(Bαβ) , ϕ̃α
−1

(Bαγ) are the
required sets.

□

We finally have,

Theorem 3.4. TM is a 2n-dimensional smooth manifold with atlas given by,{(
TUα, ϕ̃α

)
| α ∈ N

}
(3.7)

Proof. The only thing left is to show that ϕ̃ is a homeomorphism. The compatibility
of these potential charts follows from the smoothness of the transition functions
3.5. From the defintion 3.3 it is clear that ϕ̃ is a bijection. Continuity follows from
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the fact that inverse image of all the basic sets of ϕ̃α (Uα) × Rn are defined to be
the basic open sets of TM . And since all the basic sets in TM are precisely the

union of ˜ϕ−1 (Bαβ), we have ϕ̃ to be an open map.
□

TM is called the Tangent Bundle of the manifold M. The projection map
π : TM → M is a surjective smooth map, since locally the transition functions
are just the projection maps from R2n onto Rn which are smooth. Infact π is a
smooth submersion. Tangent bundles are the special case of vector bundles where
every preimage of the projection map are vector spaces attached to a point.

Definition 3.5. A smooth vector bundle of rank k over a manifold M is a triple
(V,M, π) where

(1) V is a smooth manifold and π : V →M is a smooth surjection.
(2) For each p ∈ M , Vp = π−1(p) is a vector space of dim. k. It’s called the

fibre at p
(3) (Local Trivialization) For any p ∈M , there is a neighborhood U ⊆M , and

a diffeomorphism, h : π−1 (U) → U × Rk such that the following diagram
commutes,

π−1(U) U × Rk

U

h

π
proj.U

and also h : Vq → {q} × Rk is a linear isomorphism for each q ∈ U .

Remark 3.6. dim V = dim M + k. And π is a submersion, because proj.U ≡ π̃
is a submersion. Indeed for any tangent vector v at p in TpU , we can define w ∈
Tπ̃−1(p)

(
U × Rk

)
as w(f) = v(f |U×{0}), for all f ∈ C∞(U). The diffeomorphism h

ensures submersion of π as well.

Remark 3.7. h : π−1 → U × Rk is called a local trivialization,

Figure 21. Local Trivialization of V
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Some examples which will clarify in steps the different parts of definitions.
Examples.
1. Trivial Vector Bundle
M smooth manifold. Then

(
M × Rk,M, πM

)
is a vector space bundle of rank k

over M. The projection map,

πM :M×Rk →M

πM(p, x) = p

is indeed a smooth surjection. And for each point p ∈ M , we have Vp = Rk

a k − dim vector space. And the identity map of M × Rk is the local (global!)
trivialization. This is the trivial vector bundle of rank k over M.

2. Tangent Bundle
If M is an n-manifold, then TM is a vector bundle of rank n over M .

π : TM →M, π(p, v) = p,

π is a smooth surjection as we already noted in the last subsection. And π−1(p) is
precisely the tangent space at p, TpM an n−dimensional vector space. And recall
that our charts on TM are precisely in the form of local trivialization. And charts
indeed define diffeomorphisms.

TU U × Rk

U

h

π
π̃

And indeed, TpU
h∼= p× Rn.

Now, for a more non-trivial example.
3. Möbius Bundle

Figure 22. The mobius strip can be realised as the bundle over
S1. Note the R attached to every point on the central circle.



INTRODUCTION TO MANIFOLDS 26

The intuition is clear, let’s make it formal. Mobius strip is defined as,

M = [−1, 1]× R/ ∼, (−1, t) ∼ (1,−t) .

π̃ : [−1, 1]× R S1

M

π̃

q π

π̃(s, t) = eπis and π̃(−1, t) = π̃(1, t′) induces a continous map π : M → S1.
Infact we also saw that, M ∼= S1 × R/ ∼, with (z, t) ∼ (−z,−t). We will work
with this quotient space to see the bundle structure. Note the following diagram
commutes and induces the same map π :M → S1.

Figure 23. π̃(z, t) = z2.

Let’s verify the vector bundle strucutre in steps,

• π̃ is smooth =⇒ π is smooth.
• π−1(w) = {[z, t] | z2 = w} = {±z} × R/ ∼ ∼= R

Figure 24
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• Consider U+ = S1−{−1}, U− = S1−{1}. Then π̃−1 (U+) = (S1 − {±i})×
R. Define,

V+ =
{
z ∈ S1 | Rez > 0

}
× R

o
⊂ π̃−1 (U+)

Note that q : S1×R →M is a local diffeomorphism so we immediately have
the diffeomorphism q : V+ → q(V+) = π−1(U+). But V+ is diffeomorphic to
U+ × R given by,

f : V+ → U+ × R, f(z, t) = (z2, t).

We thus have the following local trivialization on M .

h = f ◦ q−1 : π−1(U+) → U+ × R

Figure 25. Möbius strip as a non-trivial bundle over S1

Similarly, we have trivializations with U−. We already saw that the fibers
for each point in U+ are of form {±z}×R/ ∼ (∼= R) and are indeed mapped
to {z} × R in U+ × R under h linearly, and isomorphically.

So, Möbius strip is a bundle over S1!
1. Fix the diffeomorphism between M and S1 × R/ ∼ .

2. Show that both induce the same π map. These questions are not much relevant
to present discussion, these must have been clear in the previous subsections. Make
sure you fix them in time.

4. Tautological (line) Bundle of RP n

RP n =
Rn+1 − {0}

∼
, x ∼ cx, c ∈ R.
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We define,

Ln = {([x] , v) ∈ RP n × Rn+1 | v ∈ span(x)}. (3.8)

This is a bundle over RP n with,

π : Ln → RP n, π ([x] , v) = [x] (3.9)

The fibers are given by, π−1 ([x]) = [x] × span(x) ∼= R. Define the topology on
Ln by demading π is continous. Define the charts as follows,

ϕ : π−1(Ui) → ϕ0(Ui)× R ⊆ Rn+1

([l], v) 7→

(
l0
li
, . . . ,

l̂i
li
, . . . ,

ln
li
, vi

)
(3.10)

Injection: ϕ([l], v) = ϕ([m], w) ⇐⇒ [l] = [m]&vi = wi =⇒ v = w.
Surjection: If (m1, . . . ,mn+1) ∈ Rn+1, then,

ϕ ([m1, . . . ,mi−1, 1,mi, . . . ,mn],mn+1 (m1, . . . , 1,mi, . . . ,mn)) = (m1, . . . ,mn+1) .

The smoothness of transition functions is easy to check. The local trivialization
is simply,

ϕ : π−1(Ui) → Ui × R
([l], v) 7→ ([l], vi)

the composition of charts (diffeomorphisms) on Ln and the charts on RP n.
Ln is a vector bundle of rank 1 over RP n. Rank 1 vector bundles are also called

line bundles.
Infact, RP n is a regular submanifold of Ln which can be seen from the charts

on Ln. Vi = {([l], 0) | li ̸= 0, l ∈ Rn+1} ⊆ π−1(Ui) = ϕ−1
i (Rn × {0}) ∼= Ui.

L1 is exactly the Möbius bundle over S1. because note that RP 1 ∼= S1.

3.2. Homomorphisms of Vector Bundles.

Definition 3.8. Let π : V → M and π′ : V ′ → N be two vector bundles. A
homomorphism f̃ : V → V ′ is a smooth map s.t. ∃f : M → N for which the
following diagram commutes,
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Figure 26. Vector Bundle Homomorphism

i.e f̃(Vx) ⊆ V ′
f(x). And f̃ : Vx → V ′

f(x) is a fiber to fiber linear map.

Definition 3.9. Let π : V → M and π′ : V ′ → M be two vector bundles over
M . And isomorphism f̃ : V → V ′ is a diffeomorphism s.t the following diagram
commutes,

Figure 27. Vector Bundle Isomorphism

i.e f̃(Vx) = V ′
x. And f̃ : Vx → V ′

x is a fiber to fiber linear isomorphism.

Examples.
1. F :M → N is a smooth map. Define,

F∗ : TM → TN

(p, v) 7→ (F (p), F∗p(v)) (3.11)
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Figure 28. Tangent Bundle Homomorphism

F∗ is a linear map because F∗p is linear for each p ∈ M . We need to show F∗
is smooth. Let U, ϕ be a chart of M and V, ψ be a chart of N, st. F (U) ⊆ V .

Further, let
(
TU, ϕ̃

)
be a chart of TM ,

ϕ̃ : TU → ϕ(U)× Rm

and
(
TV, ψ̃

)
be a chart of TN ,

ψ̃ : TV → ψ(V )× Rn

Then, ψ̃ ◦ F∗ ◦ ϕ̃−1(x, c) = (ψ ◦ F ◦ ϕ−1(x), Jψ◦F◦ϕ−1 (x) c) is indeed smooth. So,
F∗ is smooth and is a vector bundle homomorphism between TM and TN .

2. In the above example, if F is an embedding, then so is F∗.
3. If M ⊆ N is regular submanifold, then TM ⊆ TN is also a regular subman-

ifold. If U, ϕ is an adapted chart of M, then TU, ϕ̃ is an adapted chart of TM.
As special cases of we have the following two examples. 4. TRn ∼= Rn × Rn, with(
p, ci

∂
∂xi

|p
)
7→ (p, (c1, . . . , cn)) is an isomorphism of vector bundles over Rn. So, if

M ⊆ Rn is a regular submanifold, then TM ⊆ Rn × Rn is a regular submanifold.
5. Sn ⊆ Rn+1. Then

TSn = {(x, v) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, ⟨x, v⟩ = 0}
with π : TSn → Sn, π(x, v) = x.
If n = 2,

TS2 = {(x, v) ∈ R3 × R3 | x21 + x22 + x23 = 1, v1x1 + v2x2 + v3x3 = 0}.

3.3. Sections. There are many kind of subsections: L1, L2, Smooth, Measur-
able. . .

Definition 3.10. Let π : V → M be a smooth vector bundle. A subsection
s :M → V is a map s.t. π ◦ s = idM , i.e. s(x) ∈ Vx.



INTRODUCTION TO MANIFOLDS 31

Figure 29. Section of a vector bundle

We say that s is a smooth subsection, if s is a smooth map.
Examples.
1. if V =M × Rk π→M , the a smooth subsection s :M →M × Rk is basically

s(x) = (x, f(x)), where f : M → Rk is a smooth map. So, s on a trivial vector
bundle is determined entirely by the f .

2. If π : V → M is a vector bundle and 0x is zero of Vx. The subsection
z :M → V, z(x) = 0x is a smooth subsection.

Let (U, ϕ) be a chart ofM such that, h : π−1(U) → U×Rk is a local trivialization.
Then,

U
z→ π−1(U)

h→ U × Rk, h(z(x)) = (x, 0)

Since h ◦ z : U → U × Rk is smooth, z is also smooth.

Definition 3.11. A local subsection of π : V →M is a subsection over some open
subset U of M ,

s : U → π−1(U) = V |U
which is a smooth map s.t. π ◦ s = IdU .

We denote the set of all local subsections of vector bundle V by,

Γ (V, U) = {s : U → V |U | π ◦ s = IdU , s is smooth}
And the set of all global subsections by Γ(V ) := Γ (V,M).
Examples. The set of all global subsections of trivial vector bundle is just

the set of all smooth functions from M to Rk. The Zero subsection, z is a global
subsection for any vector bundle. Infact, z is an embedding of M in V.

Exercise. Show that any subsection s :M → V is an embedding.

Proposition 3.12. Let π : V →M be a vector bundle.

(1) If s1, s2 ∈ Γ(V ), then s1 + s2 ∈ Γ(V ).
(2) If s ∈ Γ(V ), f ∈ C∞(M) then fs ∈ Γ(V ).
(3) Γ(V ) is a module over C∞(M).

Infact this is a projective module and is an algebraic geometric way of defining
vector bundles.
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Proof. We define (s1 + s2) (x) = s1(x) + s2(x) ∈ Vx. We want to show that s =
s1 + s2 is a smooth map. For p ∈M , choose an open set U ⊆M containing p s.t.
we have the local trivialization,

h : V |U → U × Rk.

s|U is smooth ⇐⇒ h◦s|U is smooth. h◦si(x) = (x, fi(x)) as a subsection of a trivial
vector bundle where fi : U → Rk is smooth. Then h ◦ s(x) = (x, f1(x) + f2(x)) is
smooth. The multiplication with f ∈ C∞(M) is similarly pointwise and we thus
have a module structure over C∞(M). □

We saw two line bundles over S1,

(1) π :M → S1 the Möbius Bundle.
(2) π : S1 × R → S1 the trivial line bundle.

Proposition 3.13. M and S1 × R are not isomorphic as vector bundles.

Proof. Suppose h : V = S×R →M is an isomorphism. Then h should take zV (S
1)

to zM(S1).

Figure 30. The image of zero subsections of V and M.

Let h(S1×{0}) = A. S1×R−S1×{0} = S1× (R− {0}) is disconnected where
as, M − A is connected, which contradicts the fact that h is a contradiction.

Claim 3.14. M − A is connected.

Proof. It is infact path connected.
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Figure 31. M-A is path connected.

□

So, Möbius bundle and the trivial bundle over S1 are not isomorphic as vector
bundles. □

We can talk about smoothly varying basis on (fibers of) vector bundle.

3.4. Frames.

Definition 3.15. π : V → M be a vector bundle of rank k, and U ⊆ M an
open subset. If s1, . . . , sk ∈ Γ(V, U) such that s1(x), . . . , sk(x) forms a basis of
Vx ∀x ∈ U , then {s1, . . . , sk} is called a local frame of V on U.

Proof. =⇒ : If M × Rk h→ V is an isomorphism, then define si : M → V, si(x) =
h(x, ei). s1(x), . . . , sk(x) form a basis. □

⇐= : Let s1, . . . , sk ∈ Γ(V ) be a global frame. Then define,

h :M × Rk → V

h(x, c) = c1s1(x) + · · · , cksk(x) ∈ Vx

h : {x} × Rk → Vx is a linear isomorphism.

Claim 3.16. h is a diffeomorphism.

Proof. h is clearly a bijection. And it suffices to show that h is a smooth immersion

(by inverse function theorem). Let (U, ϕ) be a chart of M , s.t. V |U
g→ U × Rk is

a trivialization.
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Figure 32

g(si(x)) = (x, fi(x)) , fi : U → Rk is smooth. Then, G(x, c) = (x,
∑
cifi(ϕ

−1(x))
is smooth with the jacobian,

JG(x, c) =

(
I 0
∗ f1ϕ

−1(x) · · · fkϕ−1(x)

)
(3.12)

This is invertible because {fi} are linearly independent. Thus h is a smooth im-
mersion, and a diffeomorphism. □

Remark. Any vector bundle is locally trivial. So locally any subsection can be
written as a function. It is indeed remarkable that the local trivialization can now
be written in terms of the local frames.

Infact this will give us a criterion for checking smoothness of subsections via
local frames.

Proposition 3.17. Suppose s1, . . . , sn ∈ Γ(V, U) which forms a frame of V on
U. Then a subsection t : U → V |U is smooth ⇐⇒ ∃a1, . . . , an ∈ C∞(U) s.t.
t = a1s1 + . . .+ ansn.

Proof. =⇒ : Consider the local trivialization h : U × Rn → V |U .
Then h(p, c) =

∑n
i=1 cisi(p) because {si} is a frame on U. Note that a subsection

from U to U ×Rk is given by s(p) = (p, a1(p), . . . , an(p)). So, any subsection from
U to V |U is given by h ◦ s(p) = t(p) =⇒ t = a1s1 + . . .+ ansn.

The other direction is trivally true since all si are smooth. □

So we can use the trivialization cover of the vector bundle and the above result
to show smoothness of subsection on M .

3.5. Vector Fields.

Definition 3.18. LetM be a smooth manifold. A vector field onM is a subsection
of TM . A vector field X :M → TM is called smooth if it is a smooth subsection.

We denote the set of all vector fields on M as, X(M) := Γ(TM). X(M) is a
C∞(M) module.

Examples.
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1. What is a vector field on Rn?

TRn ∼= Rn × Rn

If X : Rn → TRn is a vector field then X(p) = (p, v(p)) where v : Rn → Rn is
C∞. So a vector field X is determined by v ∈ C∞(Rn,Rn).

2. If U ⊆ Rn, then X(U) ∼= C∞(U,Rn).

3. v : R2 → R2, v(x, y) = (−y, x). Basically X(x, y) =
(
x, y,−y ∂

∂x
+ x ∂

∂y

)
. We

often ditch the x, y part of the vector field and simply write, X(x, y) = (−y, x) or
as an element of the tangent space which is subspace of Rn.

Figure 33. Curl Vector field in R2

4. [Gradient Vector Field]
If f : Rn → R is a C∞(Rn) function,

∇f =

(
∂

∂x1
, . . . ,

∂

∂xn

)
: Rn → Rn (3.13)

is called the gradient vector field of f .
If f : R2 → R2, f(x, y) = xy then the gradient vector field of f evaluated at

f−1(1) is,
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Figure 34. Gradient Vector field for f(x, y) = xy, evaluated at
f−1(1).

If M ⊆ Rn is a regular submanifold, then TM ⊆ TRn ∼= Rn ∼= Rn is a regular
submanifold. If X :M → TM is a vector field, then X gives us a smooth function,
X(p) = (p, v(p)) where v ∈ C∞(M,Rn) and v(p) ∈ Tp(M) ⊆ Rn.

So, vector fields on M are given by smooth functions v : M → Rn s.t. v(p) ∈
TpM ∀p ∈<. Let’s look at some examples of such cases.

5. Consider S1 a reg. sub manifold of R2, and X ∈ X(S1), X(x, y) = (−y, x).
We see that X(p) ̸= 0 ∀p ∈ S1. Since TS1 is a rank 1 vector bundle, X being ̸= 0
is a frame of TS1. Thus TS1 is the trivial vector bundle TS1 ∼= S1 × R!

Figure 35. Non vanishing Vector Field on S1 which is a global
frame of TS1.
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Remarks. Indeed at any point on S1 the fibers are R1 but it is non-trivial that
TS1 is globally trivial! TS1 being a line bundle, and the above X a non-vanishing
vector field gave us a global frame such that the entire tangent bundle is trivialized,
or formally called ”parallelizable”. It is not true that any TSn is trivial. Infact Sn

is parallelizable only for n = 1, 3, 7. We note that non-vanishing vector fields are
important to analyse the parallelizability of manifolds (since they can potentially
give us a global frame). Infact, the tangent bundle of any Lie Group is trivial. S3

is a lie group and TS3 is trivial.
6. S2 ⊆ R3. And consider X : S2 → R3, X(x, y, z) = (−y, x, 0) ∈ ⟨x, y, z⟩⊥ =

T(x,y,z)S
2. This vector field vanishes at the north and south poles. Infact this

is related to the topology of S2. The Eucler characteristic of S2 is 2, and see
Pooincaré Hopf Theorem which relates the (zero) index set of vector fields to
Euler Characteristic! A special case of this is the Hairy Ball Theorem. S2n has no
continous non-vanishing vector field!

Figure 36. Vector field X(x, y, z) = (−y, x, 0) on S2 which van-
ishes at the poles.

This vector field is essentially a rotation of S2. Infact vector fields give nice
diffeomorphisms of the manifold as we will soon see.

If (U, ϕ) is a chart of M,ϕ = (x1, . . . , xn) then
∂
∂x1
, . . . , ∂

∂xn
is a local frame for

TM on U .

TU
ϕ̃−→ ϕ(U)× Rn (ϕ−1,Id)−→ U × Rn

ϕ̃

(
p, ci

∂

∂xi
|p
)

= (ϕ(p), (c1, . . . , cn)) (3.14)

Proposition 3.19. If X ∈ X(M), then X|U =
∑
ai

∂
∂xi

, where ai ∈ C∞(U).

X(p) =
n∑
i=1

ai(p)
∂

∂xi
|p (3.15)
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Basically vector fields provide a smooth way to move between tangent spaces of
points in the manifold.

Examples.
1. Consider X ∈ X(S1), where X(x, y) = (−y, x) and the chart (U+, ϕ+). We

want to write the local expression for X|U+ using the above proposition. Note
that we have been using the fact that S1 is a regular submanifold of R2, and used
the subspace definition of the tangent space at each poi9nt of S1 to write vector
fields as functions from R2 to R2. Now however the form 3.15 is true locally for all
manifolds, and we now need to rewrite X in this form.

We have,

ϕ+ : U+ → R

ϕ(x, y) =
x

1− y
, ϕ−1(t) =

(
2t

1 + t2
,
t2 − 1

1 + t2

)
(3.16)

let p = (x, y). Then,

X(x, y) = −y ∂
∂x

|p + x
∂

∂y
|p = a(p)

∂

∂θ
(3.17)

where a(p) is C∞(U+) and
∂
∂θ

is the basis of TpU+. We want to find a(p). The
above can be written as,

−y∂f
∂x

|p + x
∂f

∂y
|p = a(p)

df

dθ
|p

= a(p)ϕ−1
∗ϕ(p)

(
d

dt

)
(f) |p

= a(p)
d

dt

(
f ◦ ϕ−1

)
(ϕ(p))

= a(p)
dϕ−1

1

dt
(ϕ(p))

∂f

∂x
|p + a(p)

dϕ−1
2

dt
(ϕ(p))

∂f

∂y
|p (3.18)

This gives, a(x, y) = 1− y, and we have,

X(x, y) = (1− y)
∂

∂θ
|(x,y) (3.19)

2. We can repeat the same calculation for S2 with X(x, y, z) = (−y, x, 0). In
particular, with the chart
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ϕ : U+ → R2

ϕ(x, y, z) =

(
x

1− z
,

y

1− z

)
, ϕ−1(s, t) =

(
2s

1 + s2 + t2
,

2t

1 + s2 + t2
,
s2 + t2 − 1

1 + s2 + t2

)
(3.20)

we have,

X(p) = −y ∂
∂x

+ x
∂

∂y
+ 0

∂

∂z
=
∑(

a(p)
∂ϕ−1

1

∂s
+ b(p)

∂ϕ−1
i

∂t

)
(ϕ(p))

∂

∂xi
|p (3.21)

3.5.1. Vector Fields as Derivations. If f ∈ C∞(M) and X ∈ X(M) then define
the functions Xf :M → R given by Xf(p) = X(p)(fp).

Claim 3.20. Xf is a smooth function.

Proof. If (U, x1, . . . , xn) is a chart of M , then X(p) =
∑
ai(p)

∂
∂xi

|p for some ai ∈
C∞(U). So,

X(p)(fp) =
∑

ai(p)
∂f

∂xi
p

=
∑

ai(p)
∂f ◦ ϕ−1

∂xi
(ϕ(p)) (3.22)

Since, f is smooth and ϕ is a diffeomorphism, Xf |U is smooth, i.e. Xf ∈ C∞(M).
□

Example.
Let X ∈ X(Rn), where X = a1

∂
∂x1

+ · · ·+ an
∂
∂xn

, ai ∈ C∞(Rn). Then,

Xf(p) =
∑

ai(p)
∂f

∂xi
(p).

We can also consider the curl like vector field X on S1, and see that Xf is indeed
smooth, for f ∈ C∞(S1). This is clear from last subsection where we computed
the local form of that vector field.

Hence, any vector field X ∈ X(M) gives a map X : C∞(M) → C∞(M). And
infact X is a linear map, because X(p) acts linearly on C∞(M) as a tangent vector
(derivation). The leibniz rule is also obeyed, X (fg) = fXg+gXf . hence, X gives
a derivation of C∞(M). Infact we have the following results (which we may prov
later. It involves usage of bump function).

Theorem 3.21. Let Der (C∞(M)) be the set of linear maps, D : C∞(M) →
C∞(M) which satisfy D (fg) = fDg + gDf, ∀f, g ∈ C∞(M). Then the map

X → Der (C∞(M))



INTRODUCTION TO MANIFOLDS 40

is a linear isomorphism.

Proposition 3.22. If X is a vector field on M , X is smooth ⇐⇒ ∀f ∈ C∞(M),
Xf is smooth.

3.5.2. Vector Field Pushforward. Suppose F : M → N is a smooth map. Can we
take X ∈ X(M) and get some Y ∈ X(N) from X and F .

Problems.
1. F may not be surjective. 2. F may not be injective. In this case p1, p2 ∈

M,F (p1) = F (p2) = q ∈ N .

Figure 37. Pushforward of a vector field may not be well defined
if F is not injective.

If F is a diffeomorphism, then we can define F∗(X) as,

F∗(X)(q) = F∗F−1(q)X
(
F−1(q)

)
∀q ∈ N. (3.23)

Diffeomorphism is a strong condition to ask, but we can rectify the problem by
demanding,

F∗p (X(p)) = F∗q (X(q)) ∀p, q ∈M s.t. F (p) = F (q). (3.24)

In this case we can define a vector field Y on N by,

Y (r) = F∗p(X(p)) (3.25)

for any p ∈ F−1(r).

Definition 3.23. If F : M → N is surjective smooth map, then X ∈ X(M) and
Y ∈ X(N) are called F-related if,

Y (F (p)) = F∗p(X(p)), ∀p ∈M. (3.26)

F-related vector fields can be hard to find, but we have an interesting result for
quotient manifolds, obtained by action by a discreet group. Before stating that
let’s note a property of F − related vector fields.
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Lemma 3.24. X ∈ X(M), Y ∈ X(N) are F − related if and only if,

(Y g) ◦ F = X (g ◦ F ) ∀g ∈ C∞(N).

Proof.

M
F−→ N

Y g−→ R
For p ∈M ,

(Y g) ◦ F (p) = Y (F (p))
(
gF (p)

)
= F∗p (X(p))

(
gF (p)

)
= X(p)

(
(g ◦ F )p

)
= (X (g ◦ F )) (p).

So, Y ↷ C∞(N)
F−→ C∞(M) ↶ X. □

Proposition 3.25. If G is a discrete group acting smoothly and properly discon-
tinously on M , N = M/G and F : M → N is the quotient map (which is also a
local diffeomorphism!). Suppose X ∈ X(M) is G-invariant vector field, i.e

g∗p (X(p)) = X(gp) ∀g ∈ G, p ∈M.

Then there is a vector field Y ∈ X(N) which is F − related to X.

Figure 38. G-invariant vector field on M.

Proof. r = F (p) = F (q) ⇐⇒ q = gp for some g ∈ G. Then X(q) = X(gp) =
g∗pX(p) Then,

F∗q(X(q) = F∗q (X(gp))

= F∗q ◦ g∗p (X(p))

= F∗p (X(p))

This shows that Y (F (p)) = F∗p(X(p) is well defined. And since F is a local
diffeomorphism, Y is smooth. By abuse of notation, we write Y = F∗X. □
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Examples.
1. Consider the vector field X ∈ X(R),

X(p) =
d

dt
|p or X(p) = 1.

Z acts on R as n · t = t + n. Then, n∗p(X(p)) = 1. So X is a Z − invariant
vector field on R.

Other way to see this is to consider γ(t) = p + t, γ′(0) = d
dt
|p and n ◦ γ(t) =

p+ t+ n, n∗γ
′(0) = d

dt
|n+p.

Now, let F : R → S1 be the quotient map, with F (t) = (cos t, sin t). Then

F∗p

(
d

dt
|p
)

=
dF1

dt

∂

∂x1
|F (p) +

dF2

dt

∂

∂x2
|F (p)

= − sin p
∂

∂x1
|F (p) + cos p

∂

∂x2
|F (p)

=

(
−x2

∂

∂x1
+ x1

∂

∂x2

)
|F (p) (3.27)

This is exactly the curl like vector field we have been discussing a lot on S1!
2. Consider the action of Z2 on R2,

(m,n) · (s, t) = (s+m, t+ n) .

On R2 we have two vector fields which are Z2 invariant,

X1 =
∂

∂s
,X2 =

∂

∂t
.

Hence, if q : R2 → T 2 = S1 × S1 is the quotient map, then Yi = q∗Xi are the
vector fields on T 2.

Figure 39. Vector Fields on T 2 which are q− related to X1, X2 on
R2.

3. C2 ↷ S2, ρ(x) = −x. Recall, S2

C2

∼= RP 2.
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Consider X ∈ X(S2), X(x) = (−x2, x1, 0) ≡ −x2 ∂
∂x1

+ x1
∂
∂x2

where x =

(x1, x2, x3) . Then X(−x) = (x2,−x1, 0) = ρ∗xX(x).
Hence, Y = q∗X will be a smooth vector field on RP 2, which will have only one

zero since the antipodal points are identified.
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3.6. Integral Curves. Suppose M is a smooth manifold and X ∈ X(M). Then
a curve γ : (a, b) →M is called an integral curve of X if

γ′(t) = X(γ(t)).

Figure 40. Integral Curve of X.

If 0 ∈ (a, b) and γ(0) = p, then we say that γ is an integral curve starting at p
or p is the initial point of γ.

Examples.
1. Consider X ∈ X(R), X(p) = d

dt
|p. Then γ(t) = p + t is an integral curve of

X(p).
2. Similarly if X = X (Rn) is a constant vector field X(p) = a, for some a ∈ Rn,

then γ(t) = a+ t is an integral curve passing through p.
3. Consider X ∈ X (R2), X(x, y) = (−y, x).
If γ is the integral curve with γ(0) = (x0, y0) then,

γ′(t) = (−γ2(t), γ1(t)) =⇒ γ̇1(t) = −γ2(t); γ̇2(t) = γ1(t) =⇒ γ̈1(t) = −γ1(t).
We need to solve the 2nd order ODE. This has a general solution:

γ1(t) = a cos t+ b sin t; γ2(t) = a sin t− b cos t.

Imposing the initial condition (x0, y0), we see that,
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γ(t) =

(
cos t − sin t
sin t cos t

)(
x0
y0

)
.

This is just rotation of (x0, y0) by an angle −t.

Figure 41. Integral Curve (circle!) of X(x, y) = (−y, x)

If γ(0) = (0, 0), then γ(t) = (0, 0) is the integral curve starting at (0, 0) .
Remark. Let

Φ : R× R2 →R2

Φt(x) := Φ(t, x) =R(t)x (3.28)

then Φt+s = Φs ◦ Φt and t 7→ Φt defines a group homomorphism R → D ⇐⇒
(R2) . Note that γ is defined everywhere on R. Such vector fields with whole of R
as their domains are called complete.

4. Consider X(x) = x2 ∈ X (R).
If γ is an integral curve with γ(0) = a ̸= 0 then,

γ′(t) = γ2(t) =⇒ γ′(t)

γ2(t)
= 1∫ t

0

γ′(t)

γ2(t)
ds =

∫ t

0

ds

=⇒ γ(t) =
a

1− at
.
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The maximal domain for γ is thus
(
−∞, 1

a

)
for a > 0 and

(
1

a,∞

)
for a < 0.

X(0) = 0, so γ(t) = 0 is the constant integral curve at 0.

Figure 42. Integral Curve for X(x) = x2. Not defined for all t.

5. Consider M = R2 \ {1, 0} and X(x, y) = (1, 0) ∈ X (M). The integral curve
starting at (0, 0) will be γ(t) = (t, 0), γ : (−∞, t) →M.

This gives us a hint that the in-completeness of integral curve is not really due
to a defect in vector field, but could be due to a defect of the manifold.

We will now ask the question of existence of integral curve of a vector field
X ∈ X(M) at p in a smooth manifold M .

If (U, x1, . . . , xn) is a chart of M cenetered at p. Then,

X|U = a1
∂

∂x1
+ · · ·+ an

∂

∂xn
; a1, . . . , an ∈ C∞(U).

Figure 43

Define bi : ϕ(U) → R, bi = ai ◦ ϕ−1 ∈ C∞(ϕ(U)).
Consider Y = ϕ∗X|U (ϕ is a diffeomorphism) and the following curve γ starting

at 0.

γ′(t) = Y (γ(t)) = (b1 (γ(t)) , . . . , bn(γ(t))) , γ(0) = 0.

If this integral curve of Y ∈ X (ϕ(U)) exists then ϕ−1 ◦ γ is an integral curve of
X starting at p.

Let’s check this:
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Theorem 3.26. Let V ⊆ Rn be an open set, f : V → Rn a C∞ function, then the
differential equation

dy

dt
= f(y), y(0) = p0 ∈ V

has a unique solution y : Jp0 → V where Jp0 is an open interval in R.

The uniqueness means that, if z : (a, b) → V is also a solution i.e.

dz

dt
= f(z), z(0) = p

then (a, b) ⊆ Jp0 and z(t) = y(t) ∀t ∈ (a, b) .
Furthere there is a smooth dependence on the initial condition p0.

Theorem 3.27. Let V ⊆ Rn be open, f : V → Rn a C∞ function. Then for each
p0 ∈ V ∃ϵ > 0, a neighborhood W ⊆ V of p0, and Θ : (−ϵ, ϵ) ×W → V also C∞

s.t.

∂Θ

∂t
(t, p) = f (Θ(t, p)) and θ(0, p) = p ∀p ∈ W, t ∈ (−ϵ, ϵ.)

We can then extend these results to the smooth manifold M .

Proposition 3.28. Let M be a smooth manifold, and X ∈ X(M). There ∃ an
open set J ⊆ R×M and a smooth function θ : J 7→M s.t.

(1) Jp := {t ∈ R| (t, p) ∈ J} is an open interval containing 0.
(2) θ(p) : Jp → M, θ(p) = θ (t, p). θ(p) is the integral curve of X starting at p

with maximal domain Jp. i.e. θ
(p)(0) = θ(0, p) = p ∀p ∈M and

∂θ

∂t
(t, p) = X (θ(t, p)) ∀ (t, p) ∈ J. (3.29)

Remark 3.29. θ is called the flow of the vector field X, and J is called the flow
domain.

Consider the following curves,

γ(t) = θ(t+ s, p),

δ(t) = θ(t, q), where q = θ(s, p) (3.30)

Note that γ(0) = q = δ(0). And they satisfy,

γ′(t) =
∂θ

∂t
(t+ s, p) = X (θ (t+ s, p))

δ′(t) = X (δ(t)) (3.31)
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That is, both are integral curves of X assing through the same starting point q.
By uniqueness γ(t) = δ (t) wherever they are defined in the maximal set. We thus
have the following nice property of the flow,

θ (t+ s, p) = θ (t, θ (s, p)) (3.32)

or when written in the notation, θt(q) = θ(t, q),

θt+s(p) = θt ◦ θs(p). (3.33)

The intuition is clear, if we flow from a point p for time s and then flow from
the new point for time t, it is same as flowing for a time t+ s from p.

Figure 44

This immediately gives us the following lemma,

Lemma 3.30. t+ s ∈ Jp ⇐⇒ t ∈ Jq where q = θ(s, p). So,

Jθ(s,p) = Jp − s = {t− s | t ∈ Jp} (3.34)

Examples.
1. Consider X ∈ X(R), X(x) = x2. We found the integral curves for this vector

field aloing and their maximal domains to be,

θ =
a

1− at
, Ja =


(
1
a
,∞
)

a < 0

R a = 0(
−∞, 1

a

)
a > 0

(3.35)

Thus, X has the following flow domain,

J = {(x, a) ∈ R× R | ax < 1} (3.36)
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Figure 45

2. Consider M = S2, X ∈ X(S2) such that X(x, y, z) = (−y, x, 0). The flow
domain of this vector field is whole of R× S2, where the flow is given by,

θ(t, p) =

cos t − sin t 0
sin t cos t 0
0 0 1

 p, p = (x0, y0, z0) (3.37)

= (x0 cos t− y0 sin t, x0 sin t+ y0 cos t, z0) (3.38)

This flow is just the rotation of S2 around z-axis.

Definition 3.31. A vector field X ∈ X(M) is called complete if the flow domain
of X is R×M .

Note that among the two examples discussed above one of the special property S2

holds is compactness. Indeed on compact manifolds, all vectors fields are complete
as we will see.

Remark 3.32. If X ∈ X(M) is a complete vector field. Let θt :M →M be defined
by θt(p) = θ(t, p). Note that,

• θ0 = IdM .
• θt+s = θt ◦ θs
• θt = θ−1

−t =⇒ θ is a diffeomorphism!

The map t 7→ θt is a group homomorphism, R → Diff(M). {θt} is called a one
parameter group of diffeomorphisms of M.

Lemma 3.33 (Uniform Time). Let X ∈ X(M) and J be the flow domain of X.
If ∃ϵ > 0 s.t. (−ϵ, ϵ) ∈ Jp ∀p ∈M , then X is complete.
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Proof. The intution of the result seems clear. It basically follows from the nice
property of flows 3.35. Suppose X is not complete, then ∃p ∈M s.t. Jp = (a, b) ̸=
R. Suppose b < ∞. Let s ∈ (b− ϵ, b), and let q = θ(s, p). (−ϵ, ϵ) ⊆ Jq =⇒
(s− ϵ, s+ ϵ) ⊆ Jp ( since Jp = Jq + s), which is a contradiction. Thus b = ∞.
Similary, a = ∞. Thus J = R and X is complete.

Figure 46

□

Now to the result we promised.

Theorem 3.34. M a smooth manifold, and X ∈ X.

(1) If X is compactly supported, then X is complete.
(2) If M is compact, then any Y ∈ X(M) is complete.

Proof. Let K = Support(X) = closure{p ∈M | X(p) ̸= 0}. If p ∈M −K, Jp = R
(constant vanishing vector field). For any p ∈ M, ∃ϵ(p) > 0 and a neighborhood
Up ⊆ M of p, s.t. (−ϵ(p), ϵ(p)) ⊆ Jq ∀q ∈ Up i.e. (−ϵ(p), ϵ(p)) × Up ⊆ J.K ⊆⋃
p∈K Up. Since K is compact,

∃p1, . . . , pn s.t. K ⊆ Up1 ∪ . . . ∪ Upn .

Now, let ϵ = min{ϵ(p1), . . . , ϵ(pn)}, then (−ϵ, ϵ) ⊆ Jp for all p ∈M . From the last
lemma, X is complete. If M is compact, then X has a compact support since any
closed susbset of M is compact. □

We will now tie some loose ends before going into the theory of integration on
manifolds (and how it integrates with differentiation).

3.7. Bump Functions. Goal. If M a smooth manifold, p ∈ M,U ⊆ M is open
s.t p ∈ U , then To get a function f ∈ C∞(M) s.t. supp(f) ⊆ U , and ∃V a
neighborhood of P , V ⊆ U s.t.

f |V = 1, 0 ≤ f(x) ≤ 1.
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Figure 47. Enter Caption

To show such a function exists, we proceed in steps.
Step-1: Bump Function on R. Given r1 < r2, ∃h : R → R such that

0 ≤ h(x) ≤ 1 and

h(x) =

{
1 x ≤ r1
0 x ≥ r2

Figure 48. The function need not be decreasing in [r1, r2].

One can get such a function via f : R → R

f(x) =

{
e−1/x x > 0

0 x ≤ 0
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Figure 49

f is smooth. First note that,

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

e−1/h

h
= lim

t→∞

t

et
= 0 = lim

h→0−
=
f(0 + h)− f(0)

h
= 0.

So, f is indeed differentiable at 0 and

f(x) =

{
e−1/x · 1

x2
x > 0

0 x ≤ 0

which is continuous at x = 0, by a similar proof above,

lim
h→0+

e−1/h

1/h2
= lim

t→∞

t2

et
→ 2t

et
→ 2

et
→ 0.

Then, we can proceed via induction to show f is Ck for all k ∈ N. Thus, f is
smooth.

Now define, h(x) = f(r2−x)
f(r2−x)+f(x−r1) . This function has the property we are looking

for but as a function on R vi.z f(x)|(∞,0) ≡ 1, (∞, 0) ∈ supp(f) ⊆ R, 0 ≤ f(x) ≤ 1.
It is then easy to extend this to Rn and to a smooth manifold M via local charts.

Figure 50. Bump function on R.



INTRODUCTION TO MANIFOLDS 53

Remark. We cannot find such functions on C. Even real analytic functions
are not possible to find. This is a consequence of the Identity theorem for analytic
functions.

Step-2: Bump Function on Rn. For 0 < r1 < r2, ∃H : Rn → R smooth such
that H|Br1 (0)

= 1, h(x) = 0 ∀x ∈ Rn \ Br2(0) and 0 ≤ h(x) ≤ 1 ∀x ∈ Rn. This
function can be obtained by using h, the bump function on R as, H(x) = h(∥x∥).

Figure 51. Bump Function on Rn

Step-3: Bump function on M . Let’s take (U, ϕ) a chart of M centered at

p, and W ⊆ U . Suppose Bϵ(0) ⊆ ϕ(W ). Then let H : Rn → R be defined as in
step-2 with r1 = ϵ/2, r2 = ϵ.

Then, define f :M → R by

f(x) =

{
H(ϕ(x) x ∈ W

0 x /∈W.

Let V = ϕ−1(Bϵ/2(0)). Then f(x)|V ≡ 1. This is the required function!
Can we extend a function defined on an open set in M to the whole

of M?
No. This is not possible even in R. For example, take f(x) = 1/x; there is no way
we can extend it beyond (0,∞) smoothly to the whole of Rn. However, we can
extend it to the whole of R by defining a function that agrees with it only on a
smaller open set.

Proposition 3.35. SupposeM is a smooth manifold, p ∈M and U a neighborhood
of p and f ∈ C∞(M), then ∃f̃ ∈ C∞(M) such that,

f̃ |V = f |V for some neighborhood V ⊆ U containing p.
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We will see that this is true not just for a point but also for a closed set.

Proof. We can use the bump function g ∈ C∞(M) satisfying , g|V ≡ 1 for some

neighborhood V ⊂ U of p such that supp(g) ⊂ U to define f̃ :M → R,

f̃(x) =

{
f(x) · g(x) x ∈ U

0 x /∈ U.

□

Proposition 3.36. A vector field X on M is smooth if and only if for any f ∈
C∞(M), Xf is also smooth.

Proof. =⇒ : If X is a smooth vector field and (U, ϕ) is a chart of M , then using
the local frame we can write,

X = ai
∂

∂xi
where ai ∈ C∞(U).

So, Xf |U = ai
∂f
∂xi

∈ C∞(U) since ai, f are smooth.
⇐= : It is enough to show that for any p ∈M.∃V neighborhood of p such that

X : V → TV is smooth.
Let (U, ϕ) be a chart around p in M . And let X = ai

∂
∂xi

; ai : U → R which may

not be smooth. Consider ϕ̃i ∈ C∞(M) extensions of ϕi ∈ C∞(U) such that

ϕ̃i|Vi = ϕi|Vi for neighborhoods Vi ⊆ U of p.

Since, Xf is smooth for all f ∈ C∞(M) we have on V =
⋂n
i=1 Vi,

Xϕ̃i|V = ai is smooth.

Thus, X|V is smooth! □

So, charts (their projections onto R) are primary examples of functions defined
only locally. With the earlier proposition, we can smoothly extend these to M !
Using this and the fact that smoothness is a local property, we were able to show
the above nice proposition for the smoothness of vector fields. In fact, we can also
similarly extend vector fields.

Proposition 3.37. Suppose M is a smooth manifold, p ∈ M , U a neighborhood
of p and X ∈ X(U), then ∃ X̃ ∈ X(M) such that

X̃|V = X|V for some neighborhood V ⊆ U containing p.
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3.8. Lie Bracket of Vector fields. Consider on a smooth manifold M , two
vector fields X,Y ∈ X(M). Then X(Y f) ∈ C∞(M) if f ∈ C∞(M). XY , when
defined this way, is not a derivation!

(XY )(fg) =X(g(Y f) + f(Y g))

=gX(Y f) + (Y f)(Xg) + fX(Y g) + (Y g)(Xf)

(Y X)(fg) =Y (g(Xf) + f(Xg))

=gY (Xf) + (Xf)(Y g) + fY (Xg) + (Xg)(Y f)

But when these two are subtracted, we see that,

(XY − Y X)(fg) = f(XY − Y X)(g) + g(XY − Y X)f.

So, (XY − Y X) is a linear map satisfying the Leibnitz rule. We thus have the
following proposition.

Proposition 3.38. Let M be a smooth manifold and X, Y ∈ X(M), then we can
define the vector field [X, Y ] called the Lie Bracket of vectors fields X, Y by,

[X, Y ](p)fp = ([X, Y ]f)(p) = X(p)(Y f)p − Y (p)(Xf)p

for any p ∈M & fp, gp ∈ C∞
p (M). Here f, g are the extensions of fp, gp on M .

Remarks.
1. This is only possible because the map C∞(M) → C∞

p (M) is a surjection (due
to the existence of the bump function). We define a vector field using a derivation
on C∞(M). This illustrates the isomorphism between X(M) and Der(C∞(M))
which we didn’t prove earlier. So, this doesn’t hold directly for complex manifolds.

2. [X,Y ] is smooth since for any function f , [X, Y ]f = X(Y f) − Y (Xf) is
smooth.

3. [ ., .] : X(M)× X(M) → X(M) satisfies following properties

(1) Anti-Commutativity : [X,Y ] = −[Y,X].
(2) Bi-Linearity

[X, aY + bZ] =a[X,Y ] + b[Y, Z]

[aX + bY, Z] =a[X,Z] + b[Y, Z]

(3) Jacobi Identity :

[X, [Y, Z]] =[[X,Y ], Z] + [Y, [X,Z]]

or equivalently,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The first form of Jacobi identity looks like the Leibnitz rule, and in fact, this is
related to the Lie-Derivative.
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Definition 3.39. Let V be a K-vector space equipped with binary operation
[., .] : V ×V → V , which is anti-commutative, bilinear and satisfies Jacobi identity,
then V is called a Lie Algebra over K.

So, X(M) is an infinite-dimensional Lie Algebra over R.
Question. How do we connect this to the Lie Algebra defined by tangent space

at the identity of a Lie Group? Here’s a rough sketch.
Let G be a Lie Group and g = TeG. If v ∈ TeG, and Lg : G→ G, Lg(h) = gh a

diffeomorphism.
Goal. To define a binary operation on g with the Lie Algebra structure.
We can define all the vector fields on G through, Xv(g) = Lg∗(v) ∈ TgG. So we

have a map g → X(M). We can then define the operation

[, ] : g× g → g

by letting [v, w] map to X[v,w] = [Xv, Xw]! Basically, we are claiming a bi-linear
homomorphism between [, ] on X(M)× X(M) and [, ] on g× g.

We can find the local form of Lie Bracket of vector fields.

Proposition 3.40. Suppose (U, x1, . . . , xn) is a chart of M and

X|U =
∑

Xi
∂

∂xi
, Xi ∈ C∞(M)

Y |U =
∑

Yi
∂

∂xi
, Yi ∈ C∞(M)

then,

[X, Y ]
∣∣
U
=
∑
i,j

(
Xi
∂Yi
∂xi

− Yi
∂Xi

∂xi

)
∂

∂xj
=
∑
j

(XYj − Y Xj)
∂

xj
.

Proof. Let’s use some physicsy notation. ∂
∂xi

≡ ∂i and summation over repeated
indices.

[X, Y ]f =X(Y f)− Y (Xf)

=X(Yj∂jf)− Y (Xj∂jf)

= (Xi∂iYj∂jf +XiYj∂i∂jf)− (Yi∂iXj∂jf + YiXj∂i∂jf)

= (Xi∂iYj − Yi∂iXj) ∂jf

□

Examples.
1. M = {(x1, x2, x3) ∈ R3 | x21 + x22 > 0}.
Take the following vector fields in X(M),
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X =
∂

∂xi
− x2
x21 + x22

∂

∂x3
,

Y =
∂

∂x2
+

x1
x21 + x22

∂

∂x3

Let’s write them in the local form. We have a single chart here, so things are
very straightforward.

[X, Y ] =(XYj − Y Xj)
∂

∂xj

=(XY3 − Y X3)
∂

∂xj

because constant functions have a vanishing derivation.
So,

XY3 =
∂

∂x1
(

x1
x21 + x22

) =
x21 − x22
x21 + x22

Y X3 =
∂

∂x2
(

−x2
x21 + x22

) =
x22 − x21
x21 + x22

[X, Y ] = 0!

3.8.1. Comments on Geometric Interpretation of Lie Brackets. The Lie Brackets
describe in some sense to what extent the mixed derivatives (fail to) commute, and
geometrically, this translates to (failure of) commutation of flows along the two
vector fields.

Definition 3.41. Let X,Y ∈ X(M) with flows Θ,Φ. The flows are called commut-
ing if ∀p ∈ M and open intervals J,K containing 0 either Θt(Φs(p)) or Φs(Θt(p))
is defined for all (s, t) ∈ J ×K then both are defined and are equal.

Theorem 3.42. [X, Y ] = 0 is and only if the flows of X and Y commute.

An important application of Lie Brackets is the Frobenius’ Theorem.
[Potential Excursion - Lie Derivative]
We now move on to the integration sector of differential geometry. As we will

soon see, the integration theory brings the boundary of a manifold to the picture,
so we will first start with a discussion on manifolds with boundaries.
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4. Manifold with Boundary

Definition 4.1. A topological manifold with boundary of dimension n is a Haus-
dorff, 2nd countable topological space M such that for any point p ∈ M , there is
a neighbourhood U homeomorphic to an open set of Hn.

We denote, H⋉ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0} and

Int Hn = {(x1, . . . , xn) ∈ Rn | xn > 0}, ∂Hn = {(x1, . . . , xn) ∈ Rn | xn = 0}.

As usual, if U ⊆ M is homeomorphic to V ⊆ Hn open and ϕ : U → V is the
homeomorphism, then (U, ϕ) is called a chart of M. Let’s see some examples of
such manifolds. These follow from a theorem we will prove shortly.

Examples.
1. Hn is an n-manifold with boundary with charts given by

Figure 52

2. The closed ball Bn = {x ∈ Rn | ∥x∥ ≤ 1}.

Figure 53

3. The hemisphere U ⊂ Sn, U = {x ∈ Sn | xn+1 ≥ 0}.
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Figure 54

If M is an n-manifold with boundary:

• x ∈ M is called an interior point if there is a chart U, ϕ of M such that
ϕ(x) ∈ Int Hn. Int Hn is the set of all interior points of M . Infact since
Int Hn is open, Int M ⊂M is open.

Int(M) = {x ∈M | ∃(U, ϕ) chart of M s.t. ϕ(x) ∈ int (Hn)}

• x ∈M is called a boundary point if for some chart (U, ϕ) ofM , ϕ(x) ∈ ∂Hn.

∂M = {x ∈M | ∃(U, ϕ) chart of M s.t. ϕ(x) ∈ ∂Hn}

is called the boundary of M .

Can one then have two charts containing a point, one taking it to the interior
of Hn and the other to the boundary of Hn? Thankfully no!

Theorem 4.2. Int(M) ∩ ∂M = ∅.

Proof. Uses local homology groups. However, we can prove this easily for smooth
manifolds. □

Corollary 4.3. ∂M =M \ Int(M) is closed.

4.1. Smooth structure on topological manifolds with boundary. The sub-
tlety here is in defining smoothness on sets not necessarily open in Rn! We can do
this by demanding a smooth extension of such a function on a neighbourhood in
Rn.

Definition 4.4. Let S ⊆ Rn be any set (not necessarily open) and f : S → Rn.
Then f is called smooth if for any x ∈ S there is a neighborhood U ⊆ Rn of x and
a smooth function f̃ : U → Rn such that,

f̃
∣∣
S∩U = f

∣∣
S∩U .
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Figure 55

U can be chosen as an open ball. Of course, this is trivial and useless for a
discrete space S.

Definition 4.5. A smooth atlas on an n-manifold with boundaryM is a collection
of charts {(Uα, ϕα) | α ∈ A} such that,

ϕα ◦ ϕ−1
b : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ)

is smooth ∀α, β ∈ A.

Definition 4.6. A smooth manifold with a boundary is a topological manifold
with a boundary with a choice of a maximal smooth atlas

Now, to the theorem we promised.

Theorem 4.7. Let M be a smooth n-manifold with boundary. If (U, ϕ) is a chart
of M such that ϕ(x) ∈ ∂Hn for some x ∈ U , then for any other chart (V, ψ) with
x ∈ V, ψ(x) ∈ ∂Hn.

Remark. There is a subtlety here. We need to argue that the topological
manifold with a boundary is the same as the smooth manifold with a boundary.
We will skip this, assuming the theorem - (3.1).

Proof. Let’s x ∈ M and ϕ(x) = 0 (this is possible WLOG only on the boundary).
Suppose ∃(V, ψ) such that ψ(x) ∈ Int(H)⋉.

Figure 56
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Choose B = Bδ(ψ(x)) ⊆ ψ(U ∩ V ) such that B ⊆ Int(H)n. Now f(y) :=
ϕ ◦ ψ−1(y) = 0, where y = ψ(x). Consider

g : ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ).

By smooth compatibility, ∃B′ = Bϵ(0) and g̃ : B
′ → Rn such that

g̃ |B′∩ϕ(U∩V )= g |B′∩ϕ(U∩V ) .

We can shrink B if needed (taking smaller δ by continuity) such that f(B) ⊆
B′ ∩ ϕ (U ∩ V ).

Then g̃ ◦ f = IdB. This means Jf (y
′) is invertible for any y′ ∈ B. So, there are

open neighborhoods Uy′ ⊆ B of y′ and Vf(y′) ⊆ B′ of f(y′) such that f : Uy′ → Vf(y′)
is a diffeomorphism. Vf(y′) is open in Rn since B′ is open in Rn.

By local criterion for openness, f(B) is open in Rn. But f(B) ⊆ Hn and
0 ∈ f(B) which gives a contradiction. □

The above is basically a proof for the following small result.

Lemma 4.8. Let U ⊂ Rn and S ⊂ Rn be an arbitrary subset and f : U → S a
diffeomorphism. Then S is open in Rn.

Here’s a nice way to get hold of manifolds with boundaries.

Theorem 4.9. Let M be a smooth manifold and f ∈ C∞(M). If a ∈ R is a
regular value of f then,

Ma = {x ∈M | f(x) ≤ a}

is a manifold with boundary where, ∂Ma = f−1(a) and Int(Ma) = f−1((−∞, a)).

Proof. M<a = {x ∈M | f(x) < a} ⊂M is an open submanifold ofM . If p ∈M<a,
there exists chart (U, ϕ) around p such that U ⊆M<a (by a suitable translation or
shrinking) such that

ϕ : U → ϕ(U) ⊆ Hn, ϕ(U) ∩ ∂Hn = ∅.

Figure 57

That is all points in M<a are mapped to Int(Hn).
If p ∈ f−1(a), then f∗ : TpM → TaR = R is surjective. Let g = a − f, g ∈

C∞(M). Then 0 is a regular value of g.
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By submersion theorem, ∃ a chart (V, ψ) around p such that for any (x1, . . . , xn)
in ψ(V ),

g ◦ ψ−1(x1, . . . , xn) = xn.

And Va = V ∩Ma = {x ∈ V | xn = g ◦ψ−1(x) ≥ 0}. This means ψ(Va) ⊆ Hn! And
in particular ψ(p) ∈ ∂Hn. We have thus provided charts on Ma which precisely
take M<a to the interior of Hn and M=a to the boundary of Hn! □

Examples.
1. S = {(x, y) ∈ R2 | |x| ≤ 1}.

Figure 58

S is a 2-manifold with a boundary due to the function,

f : R2 → R, f(x, y) = x2

with the regular value 1.
One can also deal with multiple functions to get hold of a manifold with a

boundary. (Example postponed to problem set).
2. Torus T2 [Manifolds à la Morse]

f : R2 → R3

f(s, t) = ((2 + cos t) cos s, (2 + cos t) sin t, sin t)

X = f(R2) is a compact submanifold of R2 which is diffeomorphic to the torus T2.
Take the following function on X.

h : X → R, h(x, y, z) = x.

Then, any a ∈ (−3, 3)\{±1} is a regular value of h (as seen in Quiz I). Then the
manifolds with boundaries we get are of form h−1((−∞, a]) with different values
of a,
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Figure 59

Such functions that give out information about the topology of manifolds as we
move between the regular values (or critical points) are called Morse functions.

Remarks.
1. Any manifold with boundary M such that ∂M = ∅ is a manifold.
2. If M is an n-manifold with boundary then Int(M) is an n-manifold. Because
the charts map into open sets of Int(Hn) which are open in Rn too.

Proposition 4.10. LetM be an n-manifold with boundary, then ∂M is a manifold
of dimension n− 1.

This is precisely because ∂Hn ∼= Rn−1!

Proof. For any p ∈ ∂M , there is a chart (U, ϕ) of M , such that ϕ(U) ⊆ Hn is open
and ϕ(p) ∈ ∂Hn.

Let Ũ = U ∩ ∂M . Define

ϕ̃ : Ũ → Rn−1, ϕ̃(q) = (ϕ1(q), . . . , ϕn−1(q)).

Figure 60

Then, (Ũ , ϕ̃) is a chart of ∂M. Smooth compatibility between intersecting charts
trivially follows from the smoothness of M . □

Now to the delicate part of manifolds with boundaries. The tangent space of
points in ∂M , is it an n or (n-1) dimensional vector space? Or is it something
like a (upper) half of vector space? The convention is to work with n-dimensional
vector spaces...
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Definition 4.11. LetM,N be smooth manifolds with boundary. A map f :M →
N is smooth if for any chart (V, ψ) of N , there is a chart (U, ϕ) of M such that
f(U) ⊂ V and

ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V ) is smooth.

The definition is exactly the same as that of manifolds, but of course, there is
subtlety in asking the inter-manifold transition function to be smooth. That is, If
the charts contain boundary points, then the smoothness is by earlier definition -
where it is possible to extend the function smoothly to a neighbourhood in Rn.

This way, we can define smooth functions from M to R to take derivations. Let
C∞(M) be the set of smooth functions from M to R. And as usual, C∞

p (M) is the
ring of germs of smooth functions at p. That is,

C∞
p (M) = {(U, f) | U

open
⊂ M, p ∈ U, f ∈ C∞(U)}/ ∼ .

Recall, (U, f) ∼ (V, g) ⇐⇒ ∃W ⊂ U ∩ V neighborhoof of p, such that f |W =
g|W .

Definition 4.12. The tangent space of a manifold with boundaryM at p is defined
as,

TpM = Der(C∞
p (M)).

An aside on gluing two manifolds with boundary.
1. Let M,N be manifolds with boundary and f : M → N a diffeomorphism.

Then,

K =
M ⊔N

∼
, q ∼ f(q) ∀q ∈ ∂M

is a manifold without boundary.

Figure 61

2. Visual boundary by definiong geodesic end-points. . . Compactification of
Rn. . .

Coming back to tangent spaces,

Proposition 4.13. dimTpM = dimM .

Proof. If U ⊆ M is open, TpU = TpM because the local rings are same on U and
M .

Note that if f :M → N is a diffeomorphism,

f∗ : TpM −→ Tf(p)M, f∗(v)(gf(p)) = v ((g ◦ f)p)
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is an isomorphism.
For p ∈ Int(M), it is very clear. TpM = Tp (Int(M)). So,

dimM = n =⇒ dimTp (Int(M)) = n.

.
For p ∈ ∂M , the strategy is to first show that,

Proposition 4.14. If p ∈ ∂Hn, i∗TpHn → TpRn is an isomorphism. Where
i : Hn → Rn is the (smooth) inclusion map.

Figure 62

Proof. Note the pullback,

i∗ : C∞
p (Rn) → C(

pHn)

i∗[U, f ] = [U ∩Hn, f |U∩Hn ] = [i−1(U), f ◦ i].

This is a surjection, because by defintion any smooth function on an open set in
Hn containing p can be extended to a smooth function on an open set of Rn.

Consider [V, g] ∈ C∞
p (Hn) then g can be extended to [Ṽ , g̃] ∈ C∞

p (Rn) such that

(V ∩ Ṽ , g̃|V ∩Ṽ ) =
(
i−1(Ṽ ), g̃ ◦ i

)
∼ (V, g).

This extension need not be unique so i∗ is not an injection.

• i∗ is an injection:
Suppose i∗(v) = 0 for some v ∈ TpHn . Then for any fp ∈ C∞

p (Hn),

v(fp) = v(i∗f̃p), f̃p ∈ C∞
p (Rn)

= i∗(v)
(
f̃p

)
= 0.

So, v = 0.
• i∗ is a surjection:
Let w = wi

∂
∂xi

∈ TpRn. Then define v ∈ TpHn by,
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v(fp) = w(f̃p), i∗f̃p = fp

= wi
∂f̃

∂xi
|p.

This is well defined! Suppose i∗f̃p = i∗g̃p = fp and

f̃p = [
(
U1, f̃

)
], g̃p = [(U2, g̃)]

So, there exists W
open
⊂ U1 ∩ U2 ∩Hn and p ∈ W s.t,

f̃ |W = g̃|w = f |W =⇒ ∂f̃

∂xi
|p =

∂g̃

∂xi
|p.

From the defintion it immediately follows that v(fp) is a a derivation, i.e. linear
and obeys Leibnizarity.

□

Now we can extend it to the manifolds (with boundary). Let p ∈ ∂M . ∃(U, ϕ)
chart around p such that ϕ(p) ∈ ∂Hn.

So,

ϕ : U → ϕ(U) ⊆ Hn is a diffeomorphism,

ϕ∗ : TpU → Tϕ(p)Hn is an isomorphism.

Thus, TpU is spanned by {ϕ−1
∗

(
∂
∂xi

)
| i = 1, . . . , n}.

□

We can also disucss vector bundles over manifolds with boundaries. They all
hold similar to manifolds but we will postpone the dicussion to when we need
them.

5. Differential Forms

5.1. Co-tangent Bundle. This is a special case of dual construction of a vector
bundle.

If M is a smooth manifold, we define

T ∗
pM = HomR (TpM,R)

as the cotangent space of M at p. And

T ∗M =
⊔
p∈M

T ∗
pM

as the cotangent bundle of M . We will soon prove the topology, manifold and
vector bundle structure of this set.
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Definition 5.1. A 1-form is a function (subsection) ,

w :M → T ∗M

such that w(p) ∈ T ∗
pM.

Elements of T ∗
pM are called cotangent vectors or covectors. And 1-form w is

also called a covector field.
Example. [A simple way to get hold of a 1-form]

If f ∈ C∞(M), it defines a linear map,

(df)p : TpM −→ R
v 7−→ (df)p (v) = v(fp) = v(f).

Then p 7→ df |p is a 1-form which we denote by df .
Infact, df is nothing but f∗ after noting that Tf(p)R ∼= R because in this case,

f∗(v) = v(f)
d

dt
|f(p) → df(v)

In particular, if (U, x1, . . . , xn) is a chart of M , then dx1, . . . , dxn are 1-forms on
U .

Proposition 5.2. dx1|p, . . . , dxn|p is the dual basis of ∂
∂xi

|p, . . . , ∂
∂xn

|p.

Proof. Indeed from the definition of dxi|p,

dxi|p
(

∂

∂xj
|p
)

=
∂xi
∂xj

p = δij.

which form the basis for the dual space T ∗
pM . □

Note that,

df |p = aidxi|p, where, aj = df |p
(

∂

∂xj
|p
)

=
∂f

∂xj
(p).

So, df |p = ∂f
∂xi

(p)dxi|p or,

df =
∂f

∂xi
dxi

which looks very familiar from the calculus on Euclidean spaces!
From above, it’s easy to derive the change of basis matrix for the coordinate

1-forms. Let’s say there are two intersecting charts (U, x1, . . . , xn) , (V, y1, . . . , yn)
with p ∈ U ∩ V , then

dyj =
∂yj
∂xi

dxi.

The change of basis matric from {dxi} to {dyj} is given by,
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(Jψ◦ϕ−1(x))t .

Cotangent Bundle as a vector bundle.
The projection map onto M is,

π : T ∗M →M, π(α) = p, where α ∈ T ∗
pM.

For any chart (U, ϕ) of M with ϕ = x1, . . . , xn.
Let T ∗U =

⊔
p∈U T

∗
pM. Then just as the case for TM , define

ϕ̃ : T ∗U → ϕ(U)× Rn, ϕ̃ (cidxi|p) = (ϕ(p), c1, . . . , cn) .

We give T ∗U , the topology such that ϕ is a homeomorphism. (This gives a
unique topology on T ∗U).
Let B = {W ⊆ T ∗M | W ⊆ T ∗U open for some chart (U, ϕ) of M}. This forms

a basis for a topology on T ∗M .
We take the topology on T ∗M generated by B. This satisfies,

W ⊂ T ∗M open ⇐⇒ W ∩ T ∗U is open for all charts (U, ϕ) of M.

Fill the comments on basis and topology. Prove that B indeed formas a basis. . .

So, T ∗M is a topological manifold of dimension 2n with charts of type
(
T ∗U, ϕ̃

)
,

where (U, ϕ) is a chart of M .
These charts are also smoothly compatible. If (U, ϕ), (V, ψ) are two charts of

M , then

ψ̃ ◦ ϕ̃−1 : ϕ̃ (T ∗U ∩ T ∗V ) −→ ψ̃ (T ∗U ∩ T ∗V )

(p, c) 7→
(
ψ̃ ◦ ϕ̃(p),

((
Jψ̃◦ϕ̃

)−1
)t

(p)c

)
.

We thus have, (T ∗M,M, π) as a smooth vector bundle of rank n over M .
If (U, x1, . . . , xn) is a chart of M , then the coordinate 1-forms dx1, . . . , dxn are

smooth subsections dxi : U → T ∗U = π−1(U).

Figure 63
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Thus, they form a smooth local frame of T ∗M over U.

Proposition 5.3. If w : U → T ∗U is a subsection then w is smooth ⇐⇒
∃a1, . . . , an ∈ C∞(U) such that w = aidxi.

We have proved this for any subsection of a vector bundel earlier.

Proposition 5.4. Let w be a 1-form on M . Then, the following are equivalent.

(1) w is smooth.
(2) FOr any chart (U, x1, . . . , xn) ,∃a1, . . . , an ∈ C∞(U) such that w = aidxi.
(3) For any p, there is a chart (U, ϕ) containing p for which ∃a1, . . . , an ∈

C∞(M) such that w = aidxi.

The importance of 3 is that we just need check for charts that cover M rather
than the entire atlas. This follows from the first problem of PSet-2. It is enough
to check smoothness for an atlas of M contained in a maximal smooth atlas of M.

We denote the set of 1-forms on M by Ω1(M).

Ω1(M) = {w :M → T ∗M | w is smooth}.
An aside. Any vector space is isomorphic to its dual. So, it turns out TM ∼=

T ∗M even as vector bundles.
If w is a 1-form onM , and X is a vector field then we can define a function (like

Xf for f ∈ C∞(M))

w(X) :M → R, w(X)(p) = wp(Xp)

where w ∈ T ∗
pM,Xp ∈ TpM.

Note that, if g ∈ C∞(M) then w(gX) = gw(X).

Proposition 5.5. Let w be a 1-form on M . w is smooth ⇐⇒ ∀X ∈ X(M) w(X)
is smooth.

Proof. =⇒ : If (U, x1, . . . , xn) is a chart of M and w = ajdxj for aj ∈ C∞(M),
and X ∈ X(M), then X|U = bi

∂
∂xi

. So,

w(X)|U = ajbidxj

(
∂

∂xi

)
= aibi ∈ C∞(M).

⇐= : Let w be any 1-form. WE can write w = aidxi, where ai need not be
smooth. For p ∈M , let (U, x1, . . . , xn) be a chart of M containing p. Our strategy
is to extend the local vector fields ∂

∂xi
|U on U to whole of M .

Let g be a bump function at p, g : M → R smooth with supp(g) ⊆ U . Then ∃
neighborhood V ⊆ U of p such that g|V = 1.

Let the vector field extension be defined as follows,
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Xi(q) =

{
g(q) ∂

∂xi
q ∈ U

0 q ̸∈ U.
(5.1)

Then, by the hypothesis w(Xi)|V = ai|V is smooth! So w|V is smooth. And
since smoothness is a local property, w is smooth. □

Pull back of 1-forms.
Let F :M → N be a smooth map. Then we can define,

F ∗ : C∞(M) → C∞(M)

F ∗(g) = g ◦ F.
And note that the pushforward of tangent vectors is essentially

F∗ : TpM → TF (p)N

F∗(v)(fp) = v(f ◦ F )p) = v ((F ∗f)p) .

Then we have the dual map running in the other direction,

F ∗ : T ∗
F(p)

N → T ∗
p (M)

F ∗w(v) = w(F∗(v)).

as the pullback of covectors.
So, if w is a 1-form on N , define F ∗(w) to be the 1-form on M given by,

(F ∗w)p = F ∗(wF (p)) ∈ TpM.

Figure 64

Basically there is an asymmetry in the defintion of functions. In case of vector
fields, pushforwards are well defined under special conditions like diffeomorphisms
(or F-relatedness). But here the pull back of 1-forms is natural.

Recall, if g ∈ C∞(N), dg ∈ Ω1(N) and dg = ∂g
∂xi
dxi in the local coordintes

(U, x1, . . . , xn) of N . What’s the pull back of this 1-form?
Let v ∈ TpM .
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(F ∗ (dg))p (v) = dg|F (p) (F∗(v))

= F∗(v)
(
gF(p)

)
= v(g ◦ F )

= d(g ◦ F )|p(v) ≡ d (F ∗g) |p(v).
So,

F ∗ (dg) = d (F ∗g) = d (g ◦ F ) ∈ Ω1(M).

Pull back and differential commute with each other.

Lemma 5.6. If w1, w2 are 1-forms on N and g ∈ C∞(N) then,

(1) F ∗(w1 + w2) = F ∗w1 + F ∗w2.
(2) F ∗(gw1) = F ∗g(F ∗w1) = (g ◦ F ) (F ∗w1)

These follow from the linearity of F at the level of co-tangent spaces.

Proposition 5.7. If w is a smooth 1-form on N , then F ∗w is a smooth 1-form
on M.

Proof. Let p ∈M , take a chart (V, y1, . . . , yn) of N containing F (p) and a chart
(U, x1, . . . , xn) of M containing p such that F (U) ⊆ V .

Then locally, w|V = aidyi, ai ∈ C∞(N). and

F ∗w|U = F ∗(aidyi)

= (ai ◦ F ) d (yi ◦ F )

= (ai ◦ F )
(
∂Fi
∂xj

dxj

)
.

which is smooth. Thus F ∗w|U is smooth. Since, smoothness is a lcoal property,
F ∗w is smooth on M . □

So, we have the pullback of smooth 1-forms,

F ∗Ω1(N) → Ω1(M)

5.1.1. Restriction of 1-forms to regular submanifolds. Let V be a vector space and
W ⊆ V as linear subspace. If α ∈ V ∗, α|W ∈ W ∗.

If S ⊆M is a regular submanifold, then for any p ∈ S, TpS ⊆ TpM.
This way, if v ∈ T ∗M then, v|TpS ∈ T ∗S.
This is a surjection not an injection.
If w is a 1-form on M , w|S is the 1-form on S defined for any p ∈ S as,

(w|s)p = wp|TpS.
Note that the inclusion map i : S ↪→M is an embedding. Then, i∗w = w|s
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i∗w = w|S
where (i∗w)p (v) = wp(i∗v) = wp(v).
We will often make an abuse of notation and write the induced form also as w.

So, if w ∈ Ω1(M), then i∗w ∈ Ω1(S).
Noting for M = Rn, that any w ∈ Ω1(Rn) can be written as w = a1dx1 + · · ·+

andxn where ai ∈ C∞(M) let’s see some examples.
Examples.
1. Consider S2 ⊆ R3, and the 1-form dz ∈ Ω1(R3). Then w = dz|S2 ∈ Ω1(S2).

This induced 1-form vanishes at the North and South poles!
Consider the steregraphics charts on S2. And let p = (0, 0, 1), the north pole.
Then TpS

2 is a subspace of TpR3 spanned by
{
∂
∂x
|p
}
, ∂
∂y
|p.

So, wp
(
∂
∂x
|p
)
= dz|p

(
∂
∂x
|p
)
= 0 and so is wp

(
∂
∂y
|p
)
. That is, wp = 0.

Similarly w vanishes at (0, 0,−1) . This is precisely connected to the vanishing
vector fields on S2.

2. Consider S1 ⊆ R2. It is easy to see that, w1 = dx|S1 vanishes at (±1, 0) and
w2 = dy|S1 vanishes at (0,±1) .

These are basically examples of df (or f∗) vanishing at all the critical points of
f ∈ C∞(M). Any 1-form can be written trivially as the differential of a function.

Note that there exists a global frame on S1 that is non-vanishing everywhere!
Consider, w = −ydx + xdy ∈ Ω1(R2) and induce it on S1. We know that X =
−y ∂

∂x
+ x ∂

∂y
∈ X(S1) is non-vanishing. So, w|p(Xp) = x2 + y2 = 1∀p ∈ S1 and

forms a global frame of T ∗S1. This means T ∗S1 is the trivial bundle S1 ×R (as it
must be since TS1 is)!

3. Consider q : R → S1, q(t) = (cos t, sin t). Let’s find the pullback of w =
−ydx+ xdy onto R.

q∗(w) = q∗ (−ydx) + q∗(xdy)

= − (y ◦ q) d (x ◦ q) + (x ◦ q) d (y ◦ q)
= − sin td (cos t) + cos t (d(sin t))

= sin2 tdt+ cos2 tdt = dt.

This is dual to ∂
∂t

whose pushforward makes sense because it’s a Z invariant
vector field on R and is pushed precisely to the non-vanishing vector field w.

To develop differential forms further, we need some multi linear algebra.

5.1.2. Some (multi) linear algebra . . . Let V be a vector space.

α : V × · · · × V → R
is called k-multilinear (over R for our purposes) if α is linear in each variable.
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We denote T k(V ) as the set of all k-linear maps on V . Note that, T 1(V ) = V ∗

and T k(V ) ∼= V ∗ ⊗ · · · ⊗ V ∗ which defines the multilinear function,

ϕ1 ⊗ · · · ⊗ ϕk (v1, . . . , vk) = ϕ1(v1) · · ·ϕk(vk)
.

Proposition 5.8. If v1, . . . , vn is a basis of V and v∗1, . . . , v
∗
n is the dual basis of

V ∗, then v∗i1 ⊗ · · · ⊗ v∗ik , i1, . . . , ik ∈ {1, . . . , n} is the basis of T k(V ). And thus,

dim T k(V ) = nk.

Appendix A. Tips of the Icebergs

A.1. Connected components of manifolds. Examples of manifolds with each
conected component having different dimension!

A.2. Homology Groups.

A.3. Open Mapping Theorem. ft. Vamsi Pritham Pingali

A.4. Smooth Structures on manifolds.

Appendix B. Basic Point Set Topology

To be TEXed.

Appendix C. Solutions to Problem Sets
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